Search alternatives:
based optimization » whale optimization (Expand Search)
wolf optimization » whale optimization (Expand Search), swarm optimization (Expand Search), _ optimization (Expand Search)
binary arts » binary pairs (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
arts based » areas based (Expand Search)
based optimization » whale optimization (Expand Search)
wolf optimization » whale optimization (Expand Search), swarm optimization (Expand Search), _ optimization (Expand Search)
binary arts » binary pairs (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
arts based » areas based (Expand Search)
-
1
-
2
The flowchart of the proposed algorithm.
Published 2024“…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
-
3
-
4
Summary of literature review.
Published 2024“…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
-
5
Topic description.
Published 2024“…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
-
6
Notations along with their descriptions.
Published 2024“…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
-
7
Detail of the topics extracted from DUC2002.
Published 2024“…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
-
8
Analysis and design of algorithms for the manufacturing process of integrated circuits
Published 2023“…The (approximate) solution proposals of state-of-the-art methods include rule-based approaches, genetic algorithms, and reinforcement learning. …”
-
9
Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf
Published 2024“…Next, a hybrid feature extraction approach is presented leveraging transfer learning from selected deep neural network models, InceptionV3 and DenseNet201, to extract comprehensive feature sets. To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …”
-
10
datasheet1_Graph Neural Networks for Maximum Constraint Satisfaction.pdf
Published 2021“…Despite being generic, we show that our approach matches or surpasses most greedy and semi-definite programming based algorithms and sometimes even outperforms state-of-the-art heuristics for the specific problems.…”
-
11