Showing 1 - 5 results of 5 for search '(( binary atp driven optimization algorithm ) OR ( primary phase process optimization algorithm ))', query time: 0.49s Refine Results
  1. 1
  2. 2
  3. 3

    Inconsistency concept for a triad (2, 5, 3). by Waldemar W. Koczkodaj (22008783)

    Published 2025
    “…The proposed regeneration method emulates three primary phases of a biological process: identifying the most damaged areas (by identifying inconsistencies in the pairwise comparison matrix), cell proliferation (filling in missing data), and stabilization (optimization of global consistency). …”
  4. 4

    An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows by Pierre-Alexis DELAROCHE (22092572)

    Published 2025
    “…Experimental Methodology Framework Local Processing Pipeline Architecture Data Flow: Storage I/O → Memory Buffer → CPU/GPU Processing → Cache Coherency → Storage I/O ├── Input Vector: mmap() system call for zero-copy file access ├── Processing Engine: OpenMP parallelization with NUMA-aware thread affinity ├── Memory Management: Custom allocator with hugepage backing └── Output Vector: Direct I/O bypassing kernel page cache Cloud Processing Pipeline Architecture Data Flow: Local Storage → Network Stack → TLS Tunnel → CDN Edge → Origin Server → Processing Grid → Response Pipeline ├── Upload Phase: TCP window scaling with congestion control algorithms ├── Network Layer: Application-layer protocol with adaptive bitrate streaming ├── Server-side Processing: Containerized microservices on Kubernetes orchestration ├── Load Balancing: Consistent hashing with geographic affinity routing └── Download Phase: HTTP/2 multiplexing with server push optimization Dataset Schema and Semantic Structure Primary Data Vectors Field Data Type Semantic Meaning Measurement Unit test_type Categorical Processing paradigm identifier {local_processing, cloud_processing} photo_count Integer Cardinality of input asset vector Count avg_file_size_mb Float64 Mean per-asset storage footprint Mebibytes (2^20 bytes) total_volume_gb Float64 Aggregate data corpus size Gigabytes (10^9 bytes) processing_time_sec Integer Wall-clock execution duration Seconds (SI base unit) cpu_usage_watts Float64 Thermal design power consumption Watts (Joules/second) ram_usage_mb Integer Peak resident set size Mebibytes network_upload_mb Float64 Egress bandwidth utilization Mebibytes energy_consumption_kwh Float64 Cumulative energy expenditure Kilowatt-hours co2_equivalent_g Float64 Carbon footprint estimation Grams CO₂e test_date ISO8601 Temporal execution marker RFC 3339 format hardware_config String Node topology identifier Alphanumeric encoding Statistical Distribution Characteristics The dataset exhibits non-parametric distribution patterns with significant heteroscedasticity across computational load vectors. …”
  5. 5

    DATASET AI by Elena Stamate (18836305)

    Published 2025
    “…</p><p dir="ltr">The primary aim of this dataset is to enable the development and validation of machine learning models for:</p><ul><li>Early identification of STEMI patients at high risk of developing cardiogenic shock;</li><li>Clinical triage optimization and prioritization for urgent angiography;</li><li>Supporting time-sensitive decision-making in resource-limited or overcrowded emergency settings.…”