بدائل البحث:
guided optimization » based optimization (توسيع البحث), model optimization (توسيع البحث)
lead optimization » global optimization (توسيع البحث), swarm optimization (توسيع البحث), whale optimization (توسيع البحث)
binary sample » final sample (توسيع البحث), binary people (توسيع البحث), intra sample (توسيع البحث)
sample lead » sample loaded (توسيع البحث), sample level (توسيع البحث), sample needs (توسيع البحث)
binary atp » binary data (توسيع البحث)
atp guided » ct guided (توسيع البحث), ai guided (توسيع البحث)
guided optimization » based optimization (توسيع البحث), model optimization (توسيع البحث)
lead optimization » global optimization (توسيع البحث), swarm optimization (توسيع البحث), whale optimization (توسيع البحث)
binary sample » final sample (توسيع البحث), binary people (توسيع البحث), intra sample (توسيع البحث)
sample lead » sample loaded (توسيع البحث), sample level (توسيع البحث), sample needs (توسيع البحث)
binary atp » binary data (توسيع البحث)
atp guided » ct guided (توسيع البحث), ai guided (توسيع البحث)
-
1
-
2
-
3
-
4
Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat.
منشور في 2025"…<br>The consistency of the results across different kernels demonstrates that the information contained in the habitat, by itself, leads to a very simple optimal decision rule (mostly the prediction of the most frequent class per habitat), which cannot be improved solely by model adjustments. …"
-
5
Table 1_Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.docx
منشور في 2025"…Multiple machine learning algorithms, including Random Forest, XGBoost, Gradient Boosting, Logistic Regression, CatBoost, and MLP, were optimized and evaluated. …"
-
6
Supplementary Material 8
منشور في 2025"…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…"