Search alternatives:
process optimization » model optimization (Expand Search)
based optimization » whale optimization (Expand Search)
primary data » primary care (Expand Search)
data process » data processing (Expand Search), damage process (Expand Search), data access (Expand Search)
binary b » binary _ (Expand Search)
b based » _ based (Expand Search), 1 based (Expand Search), 2 based (Expand Search)
process optimization » model optimization (Expand Search)
based optimization » whale optimization (Expand Search)
primary data » primary care (Expand Search)
data process » data processing (Expand Search), damage process (Expand Search), data access (Expand Search)
binary b » binary _ (Expand Search)
b based » _ based (Expand Search), 1 based (Expand Search), 2 based (Expand Search)
-
101
-
102
-
103
Trace, Machine Learning of Signal Images for Trace-Sensitive Mass Spectrometry: A Case Study from Single-Cell Metabolomics
Published 2019“…However, extraction of trace-abundance signals from complex data sets (<i>m</i>/<i>z</i> value, separation time, signal abundance) that result from ultrasensitive studies requires improved data processing algorithms. …”
-
104
Trace, Machine Learning of Signal Images for Trace-Sensitive Mass Spectrometry: A Case Study from Single-Cell Metabolomics
Published 2019“…However, extraction of trace-abundance signals from complex data sets (<i>m</i>/<i>z</i> value, separation time, signal abundance) that result from ultrasensitive studies requires improved data processing algorithms. …”
-
105
-
106
-
107
-
108
Supporting data for “The role of forest composition heterogeneity on temperate ecosystem carbon dynamic under climate change"
Published 2025“…The process includes (1) harmonizing Landsat 5, 7, 8, and Sentinel-2 data using the HLS algorithm, and (2) filling temporal gaps with an optimized object-based STARFM fusion algorithm. …”
-
109
-
110
-
111
-
112
-
113
Data used to drive the Double Layer Carbon Model in the Qinling Mountains.
Published 2024“…It also incorporates climate change responses, adjust decomposition rates based on climate and environmental changes, and lead to robust estimates under different climatic scenarios. The simulation process of the DLCM involves initializing SOC stocks with spatially detailed baseline data, adding organic matter inputs based on vegetation production, and simulating microbial decomposition while adjusting for climate variables such as temperature and soil moisture. …”
-
114
-
115
-
116
-
117
-
118
SPAM-XAI confusion matrix.
Published 2024“…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
-
119
Illustration of MLP.
Published 2024“…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
-
120
Dataset detail division.
Published 2024“…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”