Search alternatives:
process optimization » model optimization (Expand Search)
based optimization » whale optimization (Expand Search)
primary data » primary care (Expand Search)
data process » data processing (Expand Search), damage process (Expand Search), data access (Expand Search)
binary b » binary _ (Expand Search)
b based » _ based (Expand Search), 1 based (Expand Search), 2 based (Expand Search)
process optimization » model optimization (Expand Search)
based optimization » whale optimization (Expand Search)
primary data » primary care (Expand Search)
data process » data processing (Expand Search), damage process (Expand Search), data access (Expand Search)
binary b » binary _ (Expand Search)
b based » _ based (Expand Search), 1 based (Expand Search), 2 based (Expand Search)
-
141
CNN Model performance.
Published 2024“…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
-
142
Bi-directional LSTM Model performance.
Published 2024“…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
-
143
-
144
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
Published 2024“…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
-
145
Early Parkinson’s disease identification via hybrid feature selection from multi-feature subsets and optimized CatBoost with SMOTE
Published 2025“…The proposed framework leverages a strong categorical boosting (CatBoost) algorithm optimized using Grid Search Optimization (GSO). …”
-
146
Minimal Dateset.
Published 2025“…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
-
147
Loss Function Comparison.
Published 2025“…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
-
148
Comparative Results of Different Models.
Published 2025“…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
-
149
Loss Function Comparison.
Published 2025“…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
-
150
Overall Framework of the PSO-KM Model.
Published 2025“…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
-
151
Overall Framework of the PSO-KM Model.
Published 2025“…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
-
152
-
153
-
154
Supplementary file 1_Development of a venous thromboembolism risk prediction model for patients with primary membranous nephropathy based on machine learning.docx
Published 2025“…Objective<p>This study utilizes real-world data from primary membranous nephropathy (PMN) patients to preliminarily develop a venous thromboembolism (VTE) risk prediction model with machine learning. …”
-
155
-
156
-
157
-
158
-
159
-
160
Steps in the extraction of 14 coordinates from the CT slices for the curved MPR.
Published 2025“…Protruding paths are then eliminated using graph-based optimization algorithms, as demonstrated in f). …”