بدائل البحث:
function optimization » reaction optimization (توسيع البحث), formulation optimization (توسيع البحث), generation optimization (توسيع البحث)
wolf optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), _ optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
b function » _ function (توسيع البحث), a function (توسيع البحث), 1 function (توسيع البحث)
binary b » binary _ (توسيع البحث)
function optimization » reaction optimization (توسيع البحث), formulation optimization (توسيع البحث), generation optimization (توسيع البحث)
wolf optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), _ optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
b function » _ function (توسيع البحث), a function (توسيع البحث), 1 function (توسيع البحث)
binary b » binary _ (توسيع البحث)
-
1
-
2
The flowchart of the proposed algorithm.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
3
-
4
-
5
Table_1_bSRWPSO-FKNN: A boosted PSO with fuzzy K-nearest neighbor classifier for predicting atopic dermatitis disease.docx
منشور في 2023"…</p>Methods<p>This paper establishes a medical prediction model for the first time on the basis of the enhanced particle swarm optimization (SRWPSO) algorithm and the fuzzy K-nearest neighbor (FKNN), called bSRWPSO-FKNN, which is practiced on a dataset related to patients with AD. …"
-
6
Summary of literature review.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
7
Topic description.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
8
Notations along with their descriptions.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
9
Detail of the topics extracted from DUC2002.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
10
-
11
-
12
-
13
-
14
Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf
منشور في 2024"…Next, a hybrid feature extraction approach is presented leveraging transfer learning from selected deep neural network models, InceptionV3 and DenseNet201, to extract comprehensive feature sets. To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …"
-
15
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
منشور في 2024"…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …"
-
16
-
17
-
18
Models and Dataset
منشور في 2025"…<p dir="ltr"><b>P3DE (Parameter-less Population Pyramid with Deep Ensemble):</b><br>P3DE is a hybrid feature selection framework that combines the Parameter-less Population Pyramid (P3) metaheuristic optimization algorithm with a deep ensemble of autoencoders. …"
-
19
Supplementary Material 8
منشور في 2025"…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…"
-
20
PathOlOgics_RBCs Python Scripts.zip
منشور في 2023"…</p><p><br></p><p dir="ltr">In the fifth measurement technique, the numbers of sharp <b>surface projections/protrusions</b> were calculated by initially applying Canny's edge detection algorithm to generate an edge map of the cell mask image. …"