بدائل البحث:
application algorithm » approximation algorithm (توسيع البحث), location algorithm (توسيع البحث), maximization algorithm (توسيع البحث)
bayesian optimization » based optimization (توسيع البحث)
learning application » learning applications (توسيع البحث), emerging applications (توسيع البحث), learning optimization (توسيع البحث)
task bayesian » a bayesian (توسيع البحث), art bayesian (توسيع البحث), pac bayesian (توسيع البحث)
binary task » binary mask (توسيع البحث)
b learning » _ learning (توسيع البحث), e learning (توسيع البحث), a learning (توسيع البحث)
binary b » binary _ (توسيع البحث)
application algorithm » approximation algorithm (توسيع البحث), location algorithm (توسيع البحث), maximization algorithm (توسيع البحث)
bayesian optimization » based optimization (توسيع البحث)
learning application » learning applications (توسيع البحث), emerging applications (توسيع البحث), learning optimization (توسيع البحث)
task bayesian » a bayesian (توسيع البحث), art bayesian (توسيع البحث), pac bayesian (توسيع البحث)
binary task » binary mask (توسيع البحث)
b learning » _ learning (توسيع البحث), e learning (توسيع البحث), a learning (توسيع البحث)
binary b » binary _ (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
Classification baseline performance.
منشور في 2025"…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …"
-
13
Feature selection results.
منشور في 2025"…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …"
-
14
ANOVA test result.
منشور في 2025"…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …"
-
15
Summary of literature review.
منشور في 2025"…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …"
-
16
-
17
-
18
-
19
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
منشور في 2025"…</p><p dir="ltr">Encoding: Categorical variables such as surface coating and cell type were grouped into logical classes and label-encoded to enable model compatibility.</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…"
-
20
Data_Sheet_1_Predicting Pulmonary Function From the Analysis of Voice: A Machine Learning Approach.pdf
منشور في 2022"…Three predictive models were developed using Random Forest (RF), Support Vector Machine (SVM), and linear regression algorithms: (a) regression models to predict lung function, (b) multi-class classification models to predict severity of lung function abnormality, and (c) binary classification models to predict lung function abnormality. …"