Search alternatives:
estimation algorithm » optimization algorithms (Expand Search), maximization algorithm (Expand Search), detection algorithm (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
robust estimation » pose estimation (Expand Search), risk estimation (Expand Search)
binary b » binary _ (Expand Search)
binary a » binary _ (Expand Search), hilary a (Expand Search)
a robust » _ robust (Expand Search)
b model » _ model (Expand Search), a model (Expand Search), 2 model (Expand Search)
estimation algorithm » optimization algorithms (Expand Search), maximization algorithm (Expand Search), detection algorithm (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
robust estimation » pose estimation (Expand Search), risk estimation (Expand Search)
binary b » binary _ (Expand Search)
binary a » binary _ (Expand Search), hilary a (Expand Search)
a robust » _ robust (Expand Search)
b model » _ model (Expand Search), a model (Expand Search), 2 model (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
Individual Transition Label Noise Logistic Regression in Binary Classification for Incorrectly Labeled Data
Published 2021“…<p>We consider a binary classification problem in the case where some observations in the training data are incorrectly labeled. …”
-
8
<i>hi</i>PRS algorithm process flow.
Published 2023“…<b>(B)</b> Focusing on the positive class only, the algorithm exploits FIM (<i>apriori</i> algorithm) to build a list of candidate interactions of any desired order, retaining those that have an empirical frequency above a given threshold <i>δ</i>. …”
-
9
Determination of the Solute Content and Volumetric Properties of Binary Ionic Liquid Mixtures Using a Global Regularity of Molar Volume Expansion
Published 2021“…For instance, the water content, which is of great significance in IL studies, can easily be estimated using the proposed algorithm. By doing so, an overall AARD of 3.47% was obtained for the estimation of the water content of 68 binary systems. …”
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
Classification baseline performance.
Published 2025“…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …”
-
18
Feature selection results.
Published 2025“…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …”
-
19
ANOVA test result.
Published 2025“…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …”
-
20
Summary of literature review.
Published 2025“…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …”