Showing 101 - 109 results of 109 for search '(( binary b model optimization algorithm ) OR ( binary based network optimization algorithm ))*', query time: 0.37s Refine Results
  1. 101

    Models and Dataset by M RN (9866504)

    Published 2025
    “…</p><p dir="ltr"><br></p><p dir="ltr"><b>TJO (Tom and Jerry Optimization):</b><br>TJO is a nature-inspired metaheuristic algorithm that models the predator-prey dynamics of the cartoon characters Tom (predator) and Jerry (prey). …”
  2. 102

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) by Daniel Pérez Palau (11097348)

    Published 2024
    “…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
  3. 103

    Supplementary file 1_Comparative evaluation of fast-learning classification algorithms for urban forest tree species identification using EO-1 hyperion hyperspectral imagery.docx by Veera Narayana Balabathina (22518524)

    Published 2025
    “…</p>Methods<p>Thirteen supervised classification algorithms were comparatively evaluated, encompassing traditional spectral/statistical classifiers—Maximum Likelihood, Mahalanobis Distance, Minimum Distance, Parallelepiped, Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and Binary Encoding—and machine learning algorithms including Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN). …”
  4. 104

    Processed dataset to train and test the WGAN-GP_IMOA_DA_Ensemble model by Ramya Chinnasamy (21633527)

    Published 2025
    “…This framework integrates a novel biologically inspired optimization algorithm, the Indian Millipede Optimization Algorithm (IMOA), for effective feature selection. …”
  5. 105
  6. 106

    Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield... by Uttam Khatri (12689072)

    Published 2022
    “…Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. …”
  7. 107

    Supplementary Material 8 by Nishitha R Kumar (19750617)

    Published 2025
    “…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…”
  8. 108

    Table 1_Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.docx by Ali Nabavi (21097424)

    Published 2025
    “…Multiple machine learning algorithms, including Random Forest, XGBoost, Gradient Boosting, Logistic Regression, CatBoost, and MLP, were optimized and evaluated. …”
  9. 109

    Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles by Soham Savarkar (21811825)

    Published 2025
    “…</p><p dir="ltr">Encoding: Categorical variables such as surface coating and cell type were grouped into logical classes and label-encoded to enable model compatibility.</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…”