بدائل البحث:
learning optimization » learning motivation (توسيع البحث), lead optimization (توسيع البحث)
policy optimization » topology optimization (توسيع البحث), wolf optimization (توسيع البحث), process optimization (توسيع البحث)
data learning » meta learning (توسيع البحث), deep learning (توسيع البحث), a learning (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
binary b » binary _ (توسيع البحث)
b policy » tb policy (توسيع البحث), _ policy (توسيع البحث), a policy (توسيع البحث)
learning optimization » learning motivation (توسيع البحث), lead optimization (توسيع البحث)
policy optimization » topology optimization (توسيع البحث), wolf optimization (توسيع البحث), process optimization (توسيع البحث)
data learning » meta learning (توسيع البحث), deep learning (توسيع البحث), a learning (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
binary b » binary _ (توسيع البحث)
b policy » tb policy (توسيع البحث), _ policy (توسيع البحث), a policy (توسيع البحث)
-
1
a) Accuracy and b) selected feature size of algorithms on the COVID-19 dataset.
منشور في 2022الموضوعات: -
2
Proposed Algorithm.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
3
Comparisons between ADAM and NADAM optimizers.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
An Example of a WPT-MEC Network.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
17
Related Work Summary.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
18
Simulation parameters.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
19
Training losses for N = 10.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
20
Normalized computation rate for N = 10.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"