بدائل البحث:
process optimization » model optimization (توسيع البحث)
step optimization » after optimization (توسيع البحث), swarm optimization (توسيع البحث), based optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
b process » _ process (توسيع البحث), a process (توسيع البحث)
data step » data set (توسيع البحث)
binary b » binary _ (توسيع البحث)
process optimization » model optimization (توسيع البحث)
step optimization » after optimization (توسيع البحث), swarm optimization (توسيع البحث), based optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
b process » _ process (توسيع البحث), a process (توسيع البحث)
data step » data set (توسيع البحث)
binary b » binary _ (توسيع البحث)
-
41
-
42
-
43
-
44
-
45
-
46
Pseudo Code of RBMO.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
47
P-value on CEC-2017(Dim = 30).
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
48
Memory storage behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
49
Elite search behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
50
Description of the datasets.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
51
S and V shaped transfer functions.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
52
S- and V-Type transfer function diagrams.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
53
Collaborative hunting behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
54
Friedman average rank sum test results.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
55
-
56
-
57
Identification and quantitation of clinically relevant microbes in patient samples: Comparison of three k-mer based classifiers for speed, accuracy, and sensitivity
منشور في 2019"…Adopting metagenomic analysis for clinical use requires that all aspects of the workflow are optimized and tested, including data analysis and computational time and resources. …"
-
58
Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19.
منشور في 2021"…P <0.05 was considered statistically significant. (B). The MCDM algorithm-Stage 2. Feature Ranking, this stage is the process of using the TOPSIS method to rank features. …"
-
59
Table_1_bSRWPSO-FKNN: A boosted PSO with fuzzy K-nearest neighbor classifier for predicting atopic dermatitis disease.docx
منشور في 2023"…In bSRWPSO-FKNN, the core of which is to optimize the classification performance of FKNN through binary SRWPSO.…"
-
60