Search alternatives:
process optimization » model optimization (Expand Search)
b process » _ process (Expand Search), a process (Expand Search)
binary b » binary _ (Expand Search)
step » stem (Expand Search)
process optimization » model optimization (Expand Search)
b process » _ process (Expand Search), a process (Expand Search)
binary b » binary _ (Expand Search)
step » stem (Expand Search)
-
41
-
42
-
43
GSE96058 information.
Published 2024“…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
-
44
The performance of classifiers.
Published 2024“…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
-
45
-
46
-
47
Image1_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF
Published 2021“…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …”
-
48
Image3_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF
Published 2021“…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …”
-
49
Image2_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF
Published 2021“…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …”
-
50
DataSheet1_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.pdf
Published 2021“…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …”
-
51
PathOlOgics_RBCs Python Scripts.zip
Published 2023“…This process generated a ground-truth binary semantic segmentation mask and determined the bounding box coordinates (XYWH) for each cell. …”
-
52
Active Learning Accelerated Discovery of Stable Iridium Oxide Polymorphs for the Oxygen Evolution Reaction
Published 2020“…Understanding the relationship between a material’s structure and functionality is an important step in the process, such that viable polymorphs for a given chemical composition need to be identified. …”
-
53
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
Published 2025“…</p><p dir="ltr">Encoding: Categorical variables such as surface coating and cell type were grouped into logical classes and label-encoded to enable model compatibility.</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…”