بدائل البحث:
random optimization » codon optimization (توسيع البحث), from optimization (توسيع البحث), carbon optimization (توسيع البحث)
robust optimization » process optimization (توسيع البحث), robust estimation (توسيع البحث), joint optimization (توسيع البحث)
dynamic robust » dynamic robustness (توسيع البحث)
binary b » binary _ (توسيع البحث)
b random » _ random (توسيع البحث), a random (توسيع البحث), vs random (توسيع البحث)
random optimization » codon optimization (توسيع البحث), from optimization (توسيع البحث), carbon optimization (توسيع البحث)
robust optimization » process optimization (توسيع البحث), robust estimation (توسيع البحث), joint optimization (توسيع البحث)
dynamic robust » dynamic robustness (توسيع البحث)
binary b » binary _ (توسيع البحث)
b random » _ random (توسيع البحث), a random (توسيع البحث), vs random (توسيع البحث)
-
1
Secure MANET routing with blockchain-enhanced latent encoder coupled GANs and BEPO optimization
منشور في 2025"…The performance of the proposed LEGAN-BEPO-BCMANET technique attains 29.786%, 19.25%, 22.93%, 27.21%, 31.02%, 26.91%, and 25.61% greater throughput, compared to existing methods like Blockchain-based BATMAN protocol utilizing MANET with an ensemble algorithm (BATMAN-MANET), Block chain-based trusted distributed routing scheme with optimized dropout ensemble extreme learning neural network in MANET (DEELNN-MANET), A secured trusted routing utilizing structure of a new directed acyclic graph-blockchain in MANET internet of things environment (DAG-MANET), An Optimized Link State Routing Protocol with Blockchain Framework for Efficient Video-Packet Transmission and Security over MANET (OLSRP-MANET), Auto-metric Graph Neural Network based Blockchain Technology for Protected Dynamic Optimum Routing in MANET (AGNN-MANET) and Data security-based routing in MANETs under key management process (DSR-MANET) respectively.…"
-
2
-
3
Multicategory Angle-Based Learning for Estimating Optimal Dynamic Treatment Regimes With Censored Data
منشور في 2021"…Specifically, the proposed method obtains the optimal DTR via integrating estimations of decision rules at multiple stages into a single multicategory classification algorithm without imposing additional constraints, which is also more computationally efficient and robust. …"
-
4
Table_1_bSRWPSO-FKNN: A boosted PSO with fuzzy K-nearest neighbor classifier for predicting atopic dermatitis disease.docx
منشور في 2023"…In bSRWPSO-FKNN, the core of which is to optimize the classification performance of FKNN through binary SRWPSO.…"
-
5
Flowchart scheme of the ML-based model.
منشور في 2024"…<b>K)</b> Algorithm selection from all models. <b>L)</b> Random forest selection. …"
-
6
-
7
Processed dataset to train and test the WGAN-GP_IMOA_DA_Ensemble model
منشور في 2025"…<p dir="ltr">In the dynamic landscape of cybersecurity, robust and efficient Intrusion Detection Systems (IDS) are essential. …"
-
8
Models and Dataset
منشور في 2025"…</p><p dir="ltr"><br></p><p dir="ltr"><b>TJO (Tom and Jerry Optimization):</b><br>TJO is a nature-inspired metaheuristic algorithm that models the predator-prey dynamics of the cartoon characters Tom (predator) and Jerry (prey). …"
-
9
Supplementary Material 8
منشور في 2025"…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…"
-
10
Data Sheet 1_Detection of litchi fruit maturity states based on unmanned aerial vehicle remote sensing and improved YOLOv8 model.docx
منشور في 2025"…However, existing studies are largely limited to the binary classification of immature and mature fruits, lacking dynamic evaluation and precise prediction of maturity states. …"
-
11
Table 1_Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.docx
منشور في 2025"…Multiple machine learning algorithms, including Random Forest, XGBoost, Gradient Boosting, Logistic Regression, CatBoost, and MLP, were optimized and evaluated. …"
-
12
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
منشور في 2025"…</p><p dir="ltr">Encoding: Categorical variables such as surface coating and cell type were grouped into logical classes and label-encoded to enable model compatibility.</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…"