Search alternatives:
codon optimization » wolf optimization (Expand Search)
size optimization » dose optimization (Expand Search), step optimization (Expand Search), design optimization (Expand Search)
binary b » binary _ (Expand Search)
b size » _ size (Expand Search), g size (Expand Search)
stop » top (Expand Search), step (Expand Search)
codon optimization » wolf optimization (Expand Search)
size optimization » dose optimization (Expand Search), step optimization (Expand Search), design optimization (Expand Search)
binary b » binary _ (Expand Search)
b size » _ size (Expand Search), g size (Expand Search)
stop » top (Expand Search), step (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
Published 2024“…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
-
16
-
17
-
18
Image processing workflow.
Published 2020“…All image segments of cell clusters were standardized to the same size with either (b) Null Bumper, (b) Blended or (d) Masked methods. …”
-
19
-
20
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
Published 2025“…</p><p dir="ltr">Encoding: Categorical variables such as surface coating and cell type were grouped into logical classes and label-encoded to enable model compatibility.</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…”