يعرض 1 - 19 نتائج من 19 نتيجة بحث عن '(( binary b swarm optimization algorithm ) OR ( primary data driven optimization algorithm ))*', وقت الاستعلام: 0.40s تنقيح النتائج
  1. 1

    Table_1_bSRWPSO-FKNN: A boosted PSO with fuzzy K-nearest neighbor classifier for predicting atopic dermatitis disease.docx حسب Yupeng Li (507508)

    منشور في 2023
    "…</p>Methods<p>This paper establishes a medical prediction model for the first time on the basis of the enhanced particle swarm optimization (SRWPSO) algorithm and the fuzzy K-nearest neighbor (FKNN), called bSRWPSO-FKNN, which is practiced on a dataset related to patients with AD. …"
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6

    Fig 3 - حسب Ali Ahmed (2567584)

    منشور في 2020
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13

    Data used to drive the Double Layer Carbon Model in the Qinling Mountains. حسب Huiwen Li (17705280)

    منشور في 2024
    "…The model divides the soil profile into topsoil (0-20 cm) and subsoil (20–100 cm) layers to match the SOC maps of the corresponding two layers generated by data-driven models. Each of these layers contains a young carbon pool (CY) with a higher decomposition rate and an old carbon pool (CO) with a lower decomposition rate. …"
  14. 14

    Label-Free Assessment of the Drug Resistance of Epithelial Ovarian Cancer Cells in a Microfluidic Holographic Flow Cytometer Boosted through Machine Learning حسب Lu Xin (728966)

    منشور في 2021
    "…Furthermore, it reflects strong potentialities to develop data-driven individualized chemotherapy treatments in the future.…"
  15. 15

    Label-Free Assessment of the Drug Resistance of Epithelial Ovarian Cancer Cells in a Microfluidic Holographic Flow Cytometer Boosted through Machine Learning حسب Lu Xin (728966)

    منشور في 2021
    "…Furthermore, it reflects strong potentialities to develop data-driven individualized chemotherapy treatments in the future.…"
  16. 16
  17. 17
  18. 18
  19. 19

    Table_1_A Phenotyping of Diastolic Function by Machine Learning Improves Prediction of Clinical Outcomes in Heart Failure.DOCX حسب Haruka Kameshima (11870333)

    منشور في 2021
    "…</p><p>Conclusion: Machine learning can identify patterns of diastolic function that better stratify the risk for decompensation than the current consensus recommendations in HF. Integrating this data-driven phenotyping may help in refining prognostication and optimizing treatment.…"