Showing 141 - 160 results of 219 for search '(( binary base based optimization algorithm ) OR ( binary based task optimization algorithm ))*', query time: 0.40s Refine Results
  1. 141

    Schematic of iteration process of IDE-IIGA. by Ling Zhao (111365)

    Published 2025
    “…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
  2. 142

    Schematic diagram of IGA chromosome coding. by Ling Zhao (111365)

    Published 2025
    “…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
  3. 143

    <i>hi</i>PRS algorithm process flow. by Michela C. Massi (14599915)

    Published 2023
    “…From this dataset we can compute the MI between each interaction and the outcome and <b>(D)</b> obtain a ranked list (<i>I</i><sub><i>δ</i></sub>) based on this metric. <b>(E)</b> Starting from the interaction at the top of <i>I</i><sub><i>δ</i></sub>, <i>hi</i>PRS constructs <i>I</i><sub><i>K</i></sub>, selecting <i>K</i> (where <i>K</i> is user-specified) terms through the greedy optimization of the ratio between MI (<i>relevance</i>) and a suitable measure of similarity for interactions (<i>redundancy)</i> (cf. …”
  4. 144
  5. 145

    the functioning of BRPSO. by Hossein Jarrahi (22530251)

    Published 2025
    “…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
  6. 146

    Characteristic of 6- and 10-story SMRF [99,98]. by Hossein Jarrahi (22530251)

    Published 2025
    “…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
  7. 147

    The RFD’s behavior mechanism (2002). by Hossein Jarrahi (22530251)

    Published 2025
    “…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
  8. 148

    Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19. by Jiaqing Luo (10975030)

    Published 2021
    “…<p>(A). The MCDM algorithm-Stage 1. Preprocessing, this stage is the process of refining the collected raw data to eliminate noise, including correlation analysis and feature selection based on P values. …”
  9. 149

    Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat. by Enrico Bertozzi (22461709)

    Published 2025
    “…Model evaluation was based on accuracy metrics and qualitative analysis of the confusion matrix.. …”
  10. 150

    Triplet Matching for Estimating Causal Effects With Three Treatment Arms: A Comparative Study of Mortality by Trauma Center Level by Giovanni Nattino (561797)

    Published 2021
    “…Our algorithm outperforms the nearest neighbor algorithm and is shown to produce matched samples with total distance no larger than twice the optimal distance. …”
  11. 151

    Sample image for illustration. by Indhumathi S. (19173013)

    Published 2024
    “…<div><p>Feature description is a critical task in Augmented Reality Tracking. This article introduces a Convex Based Feature Descriptor (CBFD) system designed to withstand rotation, lighting, and blur variations while remaining computationally efficient. …”
  12. 152

    Comparison analysis of computation time. by Indhumathi S. (19173013)

    Published 2024
    “…<div><p>Feature description is a critical task in Augmented Reality Tracking. This article introduces a Convex Based Feature Descriptor (CBFD) system designed to withstand rotation, lighting, and blur variations while remaining computationally efficient. …”
  13. 153

    Process flow diagram of CBFD. by Indhumathi S. (19173013)

    Published 2024
    “…<div><p>Feature description is a critical task in Augmented Reality Tracking. This article introduces a Convex Based Feature Descriptor (CBFD) system designed to withstand rotation, lighting, and blur variations while remaining computationally efficient. …”
  14. 154

    Precision recall curve. by Indhumathi S. (19173013)

    Published 2024
    “…<div><p>Feature description is a critical task in Augmented Reality Tracking. This article introduces a Convex Based Feature Descriptor (CBFD) system designed to withstand rotation, lighting, and blur variations while remaining computationally efficient. …”
  15. 155

    Quadratic polynomial in 2D image plane. by Indhumathi S. (19173013)

    Published 2024
    “…<div><p>Feature description is a critical task in Augmented Reality Tracking. This article introduces a Convex Based Feature Descriptor (CBFD) system designed to withstand rotation, lighting, and blur variations while remaining computationally efficient. …”
  16. 156
  17. 157
  18. 158
  19. 159
  20. 160

    Analysis and design of algorithms for the manufacturing process of integrated circuits by Sonia Fleytas (16856403)

    Published 2023
    “…The (approximate) solution proposals of state-of-the-art methods include rule-based approaches, genetic algorithms, and reinforcement learning. …”