Search alternatives:
models optimization » model optimization (Expand Search), process optimization (Expand Search), wolf optimization (Expand Search)
library based » laboratory based (Expand Search)
based models » based model (Expand Search)
binary base » binary mask (Expand Search), ciliary base (Expand Search), binary image (Expand Search)
base models » base model (Expand Search), based model (Expand Search), best models (Expand Search)
models optimization » model optimization (Expand Search), process optimization (Expand Search), wolf optimization (Expand Search)
library based » laboratory based (Expand Search)
based models » based model (Expand Search)
binary base » binary mask (Expand Search), ciliary base (Expand Search), binary image (Expand Search)
base models » base model (Expand Search), based model (Expand Search), best models (Expand Search)
-
1
-
2
-
3
-
4
MSE for ILSTM algorithm in binary classification.
Published 2023“…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
-
5
Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
Published 2025Subjects: -
6
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
Published 2019“…The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. …”
-
7
DE algorithm flow.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
8
-
9
-
10
-
11
-
12
-
13
Test results of different algorithms.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
14
-
15
Algorithm for generating hyperparameter.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
16
-
17
-
18
Results of machine learning algorithm.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
19
-
20
ROC comparison of machine learning algorithm.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”