Search alternatives:
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
library based » laboratory based (Expand Search)
base process » based process (Expand Search), phase process (Expand Search), basic process (Expand Search)
binary base » binary mask (Expand Search), ciliary base (Expand Search), binary image (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
library based » laboratory based (Expand Search)
base process » based process (Expand Search), phase process (Expand Search), basic process (Expand Search)
binary base » binary mask (Expand Search), ciliary base (Expand Search), binary image (Expand Search)
-
101
SHAP summary plot.
Published 2025“…The optimal model was further assessed for predictor importance utilizing the SHAP method and deployed on a web platform using the Streamlit library.…”
-
102
Display of the web prediction interface.
Published 2025“…The optimal model was further assessed for predictor importance utilizing the SHAP method and deployed on a web platform using the Streamlit library.…”
-
103
Presentation_1_Optimization of the k-nearest-neighbors model for summer Arctic Sea ice prediction.pdf
Published 2023“…Based on the physical characteristics of summer sea ice, different algorithms are employed to optimize the prediction model. …”
-
104
Presentation_1_Optimization of the k-nearest-neighbors model for summer Arctic Sea ice prediction.pdf
Published 2023“…Based on the physical characteristics of summer sea ice, different algorithms are employed to optimize the prediction model. …”
-
105
Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19.
Published 2021“…<p>(A). The MCDM algorithm-Stage 1. Preprocessing, this stage is the process of refining the collected raw data to eliminate noise, including correlation analysis and feature selection based on P values. …”
-
106
Parameter settings.
Published 2024“…<div><p>Differential Evolution (DE) is widely recognized as a highly effective evolutionary algorithm for global optimization. It has proven its efficacy in tackling diverse problems across various fields and real-world applications. …”
-
107
Portable Library for Homomorphic Encrypted Machine Learning on FPGA Accelerated Cloud Cyberinfrastructure
Published 2025“…This project will leverage our novel algorithmic, architectural, and memory optimizations on FPGAs to develop a portable library to enable secure and trustworthy ML inference. …”
-
108
Portable Library for Homomorphic Encrypted Machine Learning on FPGA Accelerated Cloud Cyberinfrastructure
Published 2024“…This project will leverage our novel algorithmic, architectural, and memory optimizations on FPGAs to develop a portable library to enable secure and trustworthy ML inference. …”
-
109
-
110
Acceleration of Inverse Molecular Design by Using Predictive Techniques
Published 2019“…This study addresses one of the most important drawbacks inherently related to molecular searches in chemical compound space by greedy algorithms such as Best First Search and Genetic Algorithm, i.e., the large computational cost required to optimize one or more quantum-chemical properties. …”
-
111
PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery
Published 2025“…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
-
112
PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery
Published 2025“…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
-
113
PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery
Published 2025“…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
-
114
PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery
Published 2025“…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
-
115
PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery
Published 2025“…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
-
116
PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery
Published 2025“…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
-
117
PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery
Published 2025“…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
-
118
PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery
Published 2025“…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
-
119
PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery
Published 2025“…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
-
120
PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery
Published 2025“…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”