بدائل البحث:
process optimization » model optimization (توسيع البحث)
wolf optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), _ optimization (توسيع البحث)
edge process » due process (توسيع البحث), edge processing (توسيع البحث), peace process (توسيع البحث)
binary base » binary mask (توسيع البحث), ciliary base (توسيع البحث), binary image (توسيع البحث)
binary edge » binary image (توسيع البحث)
process optimization » model optimization (توسيع البحث)
wolf optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), _ optimization (توسيع البحث)
edge process » due process (توسيع البحث), edge processing (توسيع البحث), peace process (توسيع البحث)
binary base » binary mask (توسيع البحث), ciliary base (توسيع البحث), binary image (توسيع البحث)
binary edge » binary image (توسيع البحث)
-
1
-
2
-
3
Comparisons of computation rate performance for different offloading algorithms.for N = 10, 20, 30.
منشور في 2025الموضوعات: -
4
Comparison of total time consumed for different offloading algorithms.for N = 10, 20, 30.
منشور في 2025الموضوعات: -
5
Algorithm for generating hyperparameter.
منشور في 2024"…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
6
-
7
-
8
-
9
-
10
-
11
The evolution of the Wireless Power Transfer (WPT) time fraction β over simulation frames.
منشور في 2025الموضوعات: -
12
-
13
CDF of task latency, approximated as the inverse of the achieved computation rate.
منشور في 2025الموضوعات: -
14
-
15
-
16
Results of machine learning algorithm.
منشور في 2024"…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
17
ROC comparison of machine learning algorithm.
منشور في 2024"…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
18
Best optimizer results of Lightbgm.
منشور في 2024"…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
19
Best optimizer results of Adaboost.
منشور في 2024"…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
20
Best optimizer results of Lightbgm.
منشور في 2024"…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"