Search alternatives:
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
acid optimization » based optimization (Expand Search), lead optimization (Expand Search), art optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based acid » based bci (Expand Search), based ai (Expand Search), based agi (Expand Search)
can model » cgan model (Expand Search), cnn model (Expand Search), chain model (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
acid optimization » based optimization (Expand Search), lead optimization (Expand Search), art optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based acid » based bci (Expand Search), based ai (Expand Search), based agi (Expand Search)
can model » cgan model (Expand Search), cnn model (Expand Search), chain model (Expand Search)
-
1
Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
Published 2025Subjects: -
2
-
3
-
4
Algorithm for generating hyperparameter.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
5
Results of machine learning algorithm.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
6
ROC comparison of machine learning algorithm.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
7
-
8
Best optimizer results of Lightbgm.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
9
Best optimizer results of Adaboost.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
10
Best optimizer results of Lightbgm.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
11
Random forest with hyperparameter optimization.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
12
Best optimizer results of KNN.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
13
Best optimizer results of KNN.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
14
Ensemble model architecture.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
15
Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm
Published 2025“…Improvements in sensitivity, specificity, and overall classification accuracy highlight the effectiveness of </p><p dir="ltr">combining deep learning with optimization techniques. Our results show that deep learning and optimization </p><p dir="ltr">methods, such as the binary GWO algorithm, can be successfully applied to melanoma diagnosis. …”
-
16
Comparison table of the proposed model.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
17
Confusion matrix of ensemble model.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
18
Best optimizer results of Decision tree.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
19
Best optimizer result for Adaboost classifier.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
20
Best optimizer results for random forest.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”