Search alternatives:
activity optimization » activity limitation (Expand Search), activity estimation (Expand Search), activity limitations (Expand Search)
process optimization » model optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
can process » a process (Expand Search), carlo process (Expand Search), apar process (Expand Search)
activity optimization » activity limitation (Expand Search), activity estimation (Expand Search), activity limitations (Expand Search)
process optimization » model optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
can process » a process (Expand Search), carlo process (Expand Search), apar process (Expand Search)
-
1
Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
Published 2025Subjects: -
2
-
3
-
4
-
5
Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm
Published 2025“…Improvements in sensitivity, specificity, and overall classification accuracy highlight the effectiveness of </p><p dir="ltr">combining deep learning with optimization techniques. Our results show that deep learning and optimization </p><p dir="ltr">methods, such as the binary GWO algorithm, can be successfully applied to melanoma diagnosis. …”
-
6
QSAR model for predicting neuraminidase inhibitors of influenza A viruses (H1N1) based on adaptive grasshopper optimization algorithm
Published 2020“…The binary grasshopper optimization algorithm (BGOA) is a new meta-heuristic optimization algorithm, which has been used successfully to perform feature selection. …”
-
7
Analysis and design of algorithms for the manufacturing process of integrated circuits
Published 2023“…<p>Abstract: The stage of transporting semiconductor chips from the wafer to the support strip is crucial in the integrated circuit manufacturing process. This process can be modeled as a combinatorial optimization problem where the objective is to reduce the total distance the robotic arm must travel to pick up each chip and place it in its corresponding position within the support structure. …”
-
8
Classification performance after optimization.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
9
ANOVA test for optimization results.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
10
Wilcoxon test results for optimization.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
11
Wilcoxon test results for feature selection.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
12
Feature selection metrics and their definitions.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
13
Statistical summary of all models.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
14
Feature selection results.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
15
ANOVA test for feature selection.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
16
Classification performance of ML and DL models.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
17
-
18
-
19
Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP
Published 2022“…<p>It is of great practical and theoretical significance to identify driver fatigue state in real time and accurately and provide active safety warning in time. In this paper, a non-invasive and low-cost method of fatigue driving state identification based on genetic algorithm optimization of generalized regression neural network model is proposed. …”
-
20