بدائل البحث:
network optimization » swarm optimization (توسيع البحث), wolf optimization (توسيع البحث)
art optimization » swarm optimization (توسيع البحث), after optimization (توسيع البحث), path optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
based art » based care (توسيع البحث)
network optimization » swarm optimization (توسيع البحث), wolf optimization (توسيع البحث)
art optimization » swarm optimization (توسيع البحث), after optimization (توسيع البحث), path optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
based art » based care (توسيع البحث)
-
41
Confusion matrix for binary classification.
منشور في 2024"…<div><p>This study aims to develop an optimally performing convolutional neural network to classify Alzheimer’s disease into mild cognitive impairment, normal controls, or Alzheimer’s disease classes using a magnetic resonance imaging dataset. …"
-
42
Related Work Summary.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
43
Simulation parameters.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
44
Training losses for N = 10.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
45
Normalized computation rate for N = 10.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
46
Summary of Notations Used in this paper.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
47
-
48
-
49
SHAP bar plot.
منشور في 2025"…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …"
-
50
Sample screening flowchart.
منشور في 2025"…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …"
-
51
Descriptive statistics for variables.
منشور في 2025"…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …"
-
52
SHAP summary plot.
منشور في 2025"…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …"
-
53
ROC curves for the test set of four models.
منشور في 2025"…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …"
-
54
Display of the web prediction interface.
منشور في 2025"…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …"
-
55
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
منشور في 2019"…<div><p>An image classification algorithm based on adaptive feature weight updating is proposed to address the low classification accuracy of the current single-feature classification algorithms and simple multifeature fusion algorithms. …"
-
56
Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP
منشور في 2022"…In this paper, a non-invasive and low-cost method of fatigue driving state identification based on genetic algorithm optimization of generalized regression neural network model is proposed. …"
-
57
Summary of LITNET-2020 dataset.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
58
SHAP analysis for LITNET-2020 dataset.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
59
Comparison of intrusion detection systems.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
60
Parameter setting for CBOA and PSO.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"