Showing 1 - 16 results of 16 for search '(( binary based art optimization algorithm ) OR ( lens based function optimization algorithm ))', query time: 1.46s Refine Results
  1. 1

    Lens imaging opposition-based learning. by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  2. 2

    Compare algorithm parameter settings. by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  3. 3
  4. 4
  5. 5

    -value on 23 benchmark functions (dim = 30). by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  6. 6
  7. 7
  8. 8

    -value on CEC2022 (dim = 20). by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  9. 9

    Precision elimination strategy. by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  10. 10

    Results of low-light image enhancement test. by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  11. 11

    Evaluation metrics obtained by SBOA and MESBOA. by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  12. 12
  13. 13

    Analysis and design of algorithms for the manufacturing process of integrated circuits by Sonia Fleytas (16856403)

    Published 2023
    “…The (approximate) solution proposals of state-of-the-art methods include rule-based approaches, genetic algorithms, and reinforcement learning. …”
  14. 14

    datasheet1_Graph Neural Networks for Maximum Constraint Satisfaction.pdf by Jan Tönshoff (10192709)

    Published 2021
    “…Despite being generic, we show that our approach matches or surpasses most greedy and semi-definite programming based algorithms and sometimes even outperforms state-of-the-art heuristics for the specific problems.…”
  15. 15
  16. 16

    <b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043) by Erola Fenollosa (20977421)

    Published 2025
    “…<p dir="ltr">This dataset contains the data used in the article <a href="https://academic.oup.com/aob/advance-article/doi/10.1093/aob/mcaf043/8074229" rel="noreferrer" target="_blank">"Machine Learning and digital Imaging for Spatiotemporal Monitoring of Stress Dynamics in the clonal plant Carpobrotus edulis: Uncovering a Functional Mosaic</a>", which includes the complete set of collected leaf images, image features (predictors) and response variables used to train machine learning regression algorithms.…”