Search alternatives:
assays optimization » swarm optimization (Expand Search), dosage optimization (Expand Search), cassette optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based assays » based assay (Expand Search)
assays optimization » swarm optimization (Expand Search), dosage optimization (Expand Search), cassette optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based assays » based assay (Expand Search)
-
1
Effects of Class Imbalance and Data Scarcity on the Performance of Binary Classification Machine Learning Models Developed Based on ToxCast/Tox21 Assay Data
Published 2022“…Thirty models established by combining five molecular fingerprints (i.e., Morgan, MACCS, RDKit, Pattern, and Layered) and six algorithms [i.e., gradient boosting tree, random forest (RF), multi-layered perceptron, <i>k</i>-nearest neighbor, logistic regression, and naive Bayes] were trained using the selected assay data set. …”
-
2
-
3
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
Published 2025“…</p><p dir="ltr">Encoding: Categorical variables such as surface coating and cell type were grouped into logical classes and label-encoded to enable model compatibility.</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…”