Search alternatives:
based optimization » whale optimization (Expand Search)
work optimization » wolf optimization (Expand Search), swarm optimization (Expand Search), dose optimization (Expand Search)
library based » laboratory based (Expand Search)
binary based » linac based (Expand Search), binary mask (Expand Search)
based based » based case (Expand Search), based basis (Expand Search), ranked based (Expand Search)
based work » based network (Expand Search)
based optimization » whale optimization (Expand Search)
work optimization » wolf optimization (Expand Search), swarm optimization (Expand Search), dose optimization (Expand Search)
library based » laboratory based (Expand Search)
binary based » linac based (Expand Search), binary mask (Expand Search)
based based » based case (Expand Search), based basis (Expand Search), ranked based (Expand Search)
based work » based network (Expand Search)
-
141
Layout of hybrid flow shop scheduling.
Published 2025“…In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. This work firstly proposes an Improved Probe Machine with Multi-Level Probe Operations (IPMMPO) and ingeniously designs general data libraries and probe libraries tailored for multi-scenario HFS problems, including HFS with identical parallel machines and HFS with unrelated parallel machines, no-wait scenario, and standard scenario. …”
-
142
Probe combines and as a 2-aggregation.
Published 2025“…In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. This work firstly proposes an Improved Probe Machine with Multi-Level Probe Operations (IPMMPO) and ingeniously designs general data libraries and probe libraries tailored for multi-scenario HFS problems, including HFS with identical parallel machines and HFS with unrelated parallel machines, no-wait scenario, and standard scenario. …”
-
143
Scheduling Gantt chart for instance j10c10c6.
Published 2025“…In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. This work firstly proposes an Improved Probe Machine with Multi-Level Probe Operations (IPMMPO) and ingeniously designs general data libraries and probe libraries tailored for multi-scenario HFS problems, including HFS with identical parallel machines and HFS with unrelated parallel machines, no-wait scenario, and standard scenario. …”
-
144
Scheduling Gantt chart for instance j30c5e10.
Published 2025“…In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. This work firstly proposes an Improved Probe Machine with Multi-Level Probe Operations (IPMMPO) and ingeniously designs general data libraries and probe libraries tailored for multi-scenario HFS problems, including HFS with identical parallel machines and HFS with unrelated parallel machines, no-wait scenario, and standard scenario. …”
-
145
Box plot comparison on instance j30c5e10.
Published 2025“…In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. This work firstly proposes an Improved Probe Machine with Multi-Level Probe Operations (IPMMPO) and ingeniously designs general data libraries and probe libraries tailored for multi-scenario HFS problems, including HFS with identical parallel machines and HFS with unrelated parallel machines, no-wait scenario, and standard scenario. …”
-
146
the functioning of BRPSO.
Published 2025“…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
-
147
Characteristic of 6- and 10-story SMRF [99,98].
Published 2025“…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
-
148
The RFD’s behavior mechanism (2002).
Published 2025“…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
-
149
-
150
-
151
An Example of a WPT-MEC Network.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
152
Related Work Summary.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
153
Simulation parameters.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
154
Training losses for N = 10.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
155
Normalized computation rate for N = 10.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
156
Summary of Notations Used in this paper.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
157
Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19.
Published 2021“…<p>(A). The MCDM algorithm-Stage 1. Preprocessing, this stage is the process of refining the collected raw data to eliminate noise, including correlation analysis and feature selection based on P values. …”
-
158
Triplet Matching for Estimating Causal Effects With Three Treatment Arms: A Comparative Study of Mortality by Trauma Center Level
Published 2021“…Our algorithm outperforms the nearest neighbor algorithm and is shown to produce matched samples with total distance no larger than twice the optimal distance. …”
-
159
Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf
Published 2020“…And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. …”
-
160