Showing 1 - 20 results of 27 for search '(( binary based case estimation algorithm ) OR ( binary data guided optimization algorithm ))', query time: 0.63s Refine Results
  1. 1

    The Pseudo-Code of the IRBMO Algorithm. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  2. 2

    IRBMO vs. meta-heuristic algorithms boxplot. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  3. 3

    IRBMO vs. feature selection algorithm boxplot. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  4. 4

    IRBMO vs. variant comparison adaptation data. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  5. 5
  6. 6
  7. 7

    Pseudo Code of RBMO. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  8. 8

    P-value on CEC-2017(Dim = 30). by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  9. 9

    Memory storage behavior. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  10. 10

    Elite search behavior. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  11. 11

    Description of the datasets. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  12. 12

    S and V shaped transfer functions. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  13. 13

    S- and V-Type transfer function diagrams. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  14. 14

    Collaborative hunting behavior. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  15. 15

    Friedman average rank sum test results. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  16. 16

    Bayesian variable selection in distributed lag models: a focus on binary quantile and count data regressions by Daniel Dempsey (11805621)

    Published 2025
    “…Extra parameters introduced through the DLM framework may require calibration for the MCMC algorithm, but this will not be the case in DLM-based analyses often seen in pollution exposure literature. …”
  17. 17

    Comparison of penalized logistic regression models for rare event case by Hülya Olmuş (7494017)

    Published 2022
    “…<p>The occurrence rate of the event of interest might be quite small (rare) in some cases, although sample size is large enough for Binary Logistic Regression (LR) model. …”
  18. 18

    Table 1_Provider fidelity in tuberculosis screening practices among adolescents and adults living with HIV in public health facilities in Tanzania: a cross-sectional evaluation.doc... by Lucas L. Shilugu (22644302)

    Published 2025
    “…Modified Poisson regression with robust variance was used to estimate prevalence ratios (PRs) to determine factors associated with two binary outcomes: (1) consistent TB screening over 12-month period, and (2) correct utilization of the screening tool. …”
  19. 19

    Table 2_Provider fidelity in tuberculosis screening practices among adolescents and adults living with HIV in public health facilities in Tanzania: a cross-sectional evaluation.doc... by Lucas L. Shilugu (22644302)

    Published 2025
    “…Modified Poisson regression with robust variance was used to estimate prevalence ratios (PRs) to determine factors associated with two binary outcomes: (1) consistent TB screening over 12-month period, and (2) correct utilization of the screening tool. …”
  20. 20