Search alternatives:
improves optimization » improve optimization (Expand Search), process optimization (Expand Search), improved utilization (Expand Search)
case optimization » based optimization (Expand Search), phase optimization (Expand Search), dose optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based case » base case (Expand Search), based cancer (Expand Search)
improves optimization » improve optimization (Expand Search), process optimization (Expand Search), improved utilization (Expand Search)
case optimization » based optimization (Expand Search), phase optimization (Expand Search), dose optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based case » base case (Expand Search), based cancer (Expand Search)
-
1
-
2
-
3
MSE for ILSTM algorithm in binary classification.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
4
Test results of different models on TinyPerson.
Published 2025“…These characteristics impose high demands on detection algorithms in terms of fine-grained feature extraction, cross-scale fusion capability, and occlusion resistance.The YOLOv11s model has significant limitations in practical applications: its feature extraction module has a single semantic representation, the traditional feature pyramid network has limited capability to detect multi-scale targets, and it lacks an effective feature compensation mechanism when targets are occluded.To address these issues, we propose a UAV aerial small target detection algorithm named UAS-YOLO (Universal Inverted Bottleneck with Adaptive BiFPN and Separated and Enhancement Attention module YOLO), which incorporates three key optimizations. …”
-
5
-
6
Visual comparison of TinyPerson.
Published 2025“…These characteristics impose high demands on detection algorithms in terms of fine-grained feature extraction, cross-scale fusion capability, and occlusion resistance.The YOLOv11s model has significant limitations in practical applications: its feature extraction module has a single semantic representation, the traditional feature pyramid network has limited capability to detect multi-scale targets, and it lacks an effective feature compensation mechanism when targets are occluded.To address these issues, we propose a UAV aerial small target detection algorithm named UAS-YOLO (Universal Inverted Bottleneck with Adaptive BiFPN and Separated and Enhancement Attention module YOLO), which incorporates three key optimizations. …”
-
7
Differences between models of different scales.
Published 2024“…To address these issues, we propose an improved, lightweight algorithm: LCFF-Net. First, we propose the LFERELAN module, designed to enhance the extraction of tiny target features and optimize the use of computational resources. …”
-
8
-
9
LC-FPN structure.
Published 2024“…To address these issues, we propose an improved, lightweight algorithm: LCFF-Net. First, we propose the LFERELAN module, designed to enhance the extraction of tiny target features and optimize the use of computational resources. …”
-
10
Labeling information of the VisDrone dataset.
Published 2024“…To address these issues, we propose an improved, lightweight algorithm: LCFF-Net. First, we propose the LFERELAN module, designed to enhance the extraction of tiny target features and optimize the use of computational resources. …”
-
11
LFERELAN structure.
Published 2024“…To address these issues, we propose an improved, lightweight algorithm: LCFF-Net. First, we propose the LFERELAN module, designed to enhance the extraction of tiny target features and optimize the use of computational resources. …”
-
12
The experimental environment.
Published 2024“…To address these issues, we propose an improved, lightweight algorithm: LCFF-Net. First, we propose the LFERELAN module, designed to enhance the extraction of tiny target features and optimize the use of computational resources. …”
-
13
LCFF-Net network structure.
Published 2024“…To address these issues, we propose an improved, lightweight algorithm: LCFF-Net. First, we propose the LFERELAN module, designed to enhance the extraction of tiny target features and optimize the use of computational resources. …”
-
14
LDSCD-Head structure.
Published 2024“…To address these issues, we propose an improved, lightweight algorithm: LCFF-Net. First, we propose the LFERELAN module, designed to enhance the extraction of tiny target features and optimize the use of computational resources. …”
-
15
Ablation experiment result on VisDrone-val.
Published 2024“…To address these issues, we propose an improved, lightweight algorithm: LCFF-Net. First, we propose the LFERELAN module, designed to enhance the extraction of tiny target features and optimize the use of computational resources. …”
-
16
The key parameter configurations.
Published 2024“…To address these issues, we propose an improved, lightweight algorithm: LCFF-Net. First, we propose the LFERELAN module, designed to enhance the extraction of tiny target features and optimize the use of computational resources. …”
-
17
LR-NET structure.
Published 2024“…To address these issues, we propose an improved, lightweight algorithm: LCFF-Net. First, we propose the LFERELAN module, designed to enhance the extraction of tiny target features and optimize the use of computational resources. …”
-
18
-
19
-
20