Search alternatives:
random optimization » codon optimization (Expand Search), from optimization (Expand Search), carbon optimization (Expand Search)
cell optimization » field optimization (Expand Search), wolf optimization (Expand Search), lead optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
image random » stage random (Expand Search), scale random (Expand Search)
random optimization » codon optimization (Expand Search), from optimization (Expand Search), carbon optimization (Expand Search)
cell optimization » field optimization (Expand Search), wolf optimization (Expand Search), lead optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
image random » stage random (Expand Search), scale random (Expand Search)
-
1
-
2
-
3
A* Path-Finding Algorithm to Determine Cell Connections
Published 2025“…Pixel paths were classified using a z-score brightness threshold of 1.21, optimized for noise reduction and accuracy. The A* algorithm then evaluated connectivity by minimizing Euclidean distance and heuristic cost between cells. …”
-
4
-
5
-
6
-
7
-
8
-
9
-
10
Supplementary file 1_Comparative evaluation of fast-learning classification algorithms for urban forest tree species identification using EO-1 hyperion hyperspectral imagery.docx
Published 2025“…</p>Methods<p>Thirteen supervised classification algorithms were comparatively evaluated, encompassing traditional spectral/statistical classifiers—Maximum Likelihood, Mahalanobis Distance, Minimum Distance, Parallelepiped, Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and Binary Encoding—and machine learning algorithms including Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN). …”
-
11
Flowchart scheme of the ML-based model.
Published 2024“…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …”
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf
Published 2024“…To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …”
-
20