Showing 1 - 20 results of 261 for search '(( binary based class classification algorithm ) OR ( binary a based optimization algorithm ))', query time: 0.59s Refine Results
  1. 1

    MSE for ILSTM algorithm in binary classification. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  2. 2

    ROC curve for binary classification. by Nicodemus Songose Awarayi (18414494)

    Published 2024
    “…<div><p>This study aims to develop an optimally performing convolutional neural network to classify Alzheimer’s disease into mild cognitive impairment, normal controls, or Alzheimer’s disease classes using a magnetic resonance imaging dataset. …”
  3. 3

    Confusion matrix for binary classification. by Nicodemus Songose Awarayi (18414494)

    Published 2024
    “…<div><p>This study aims to develop an optimally performing convolutional neural network to classify Alzheimer’s disease into mild cognitive impairment, normal controls, or Alzheimer’s disease classes using a magnetic resonance imaging dataset. …”
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10

    Dataset 1: Zip file containing the figures of the presented methods and results in jpeg files by Suchismita Behera (22027316)

    Published 2025
    “…<p dir="ltr">Figures represented here illustrates the <b>metaheuristic-based band selection framework</b> for hyperspectral image classification using <b>Binary Jaya Algorithm enhanced with a mutation operator</b> to improve population diversity and avoid premature convergence. …”
  11. 11

    Class distribution for binary classes. by Toheeb Salahudeen (21368040)

    Published 2025
    “…RF achieved an average accuracy of 92.7% and an F1 score of 83.95% for binary classification, 90.36% and 90.1%, respectively, for the classification of three classes of severity of depression and 89.76% and 88.26%, respectively, for the classification of five classes. …”
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17

    Model 1: All Variables for binary classification. by Toheeb Salahudeen (21368040)

    Published 2025
    “…RF achieved an average accuracy of 92.7% and an F1 score of 83.95% for binary classification, 90.36% and 90.1%, respectively, for the classification of three classes of severity of depression and 89.76% and 88.26%, respectively, for the classification of five classes. …”
  18. 18
  19. 19
  20. 20