Showing 21 - 40 results of 75 for search '(( binary based codon optimization algorithm ) OR ( binary can model optimization algorithm ))', query time: 0.59s Refine Results
  1. 21

    Best optimizer results of Extra tree. by Balraj Preet Kaur (20370832)

    Published 2024
    “…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
  2. 22

    Best optimizer results of Random Forest. by Balraj Preet Kaur (20370832)

    Published 2024
    “…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
  3. 23

    Best optimizer result for Extra tree. by Balraj Preet Kaur (20370832)

    Published 2024
    “…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
  4. 24

    Flow diagram of the proposed model. by Uğur Ejder (22683228)

    Published 2025
    “…<div><p>Machine learning models are increasingly applied to assisted reproductive technologies (ART), yet most studies rely on conventional algorithms with limited optimization. …”
  5. 25

    <i>hi</i>PRS algorithm process flow. by Michela C. Massi (14599915)

    Published 2023
    “…<b>(B)</b> Focusing on the positive class only, the algorithm exploits FIM (<i>apriori</i> algorithm) to build a list of candidate interactions of any desired order, retaining those that have an empirical frequency above a given threshold <i>δ</i>. …”
  6. 26

    Statistical summary of all models. by Amal H. Alharbi (21755906)

    Published 2025
    “…<div><p>Modern sustainable farming demands precise water management techniques, particularly for crops like potatoes that require high-quality irrigation to ensure optimal growth. This study presents a novel hybrid metaheuristic framework that combines Dipper Throated Optimization (DTO), a bio-inspired algorithm modeled on bird foraging behavior, with Polar Rose Search (PRS) to enhance deep learning models in predictive water quality assessment. …”
  7. 27

    Classification performance of ML and DL models. by Amal H. Alharbi (21755906)

    Published 2025
    “…<div><p>Modern sustainable farming demands precise water management techniques, particularly for crops like potatoes that require high-quality irrigation to ensure optimal growth. This study presents a novel hybrid metaheuristic framework that combines Dipper Throated Optimization (DTO), a bio-inspired algorithm modeled on bird foraging behavior, with Polar Rose Search (PRS) to enhance deep learning models in predictive water quality assessment. …”
  8. 28

    Classification performance after optimization. by Amal H. Alharbi (21755906)

    Published 2025
    “…<div><p>Modern sustainable farming demands precise water management techniques, particularly for crops like potatoes that require high-quality irrigation to ensure optimal growth. This study presents a novel hybrid metaheuristic framework that combines Dipper Throated Optimization (DTO), a bio-inspired algorithm modeled on bird foraging behavior, with Polar Rose Search (PRS) to enhance deep learning models in predictive water quality assessment. …”
  9. 29

    ANOVA test for optimization results. by Amal H. Alharbi (21755906)

    Published 2025
    “…<div><p>Modern sustainable farming demands precise water management techniques, particularly for crops like potatoes that require high-quality irrigation to ensure optimal growth. This study presents a novel hybrid metaheuristic framework that combines Dipper Throated Optimization (DTO), a bio-inspired algorithm modeled on bird foraging behavior, with Polar Rose Search (PRS) to enhance deep learning models in predictive water quality assessment. …”
  10. 30

    Wilcoxon test results for optimization. by Amal H. Alharbi (21755906)

    Published 2025
    “…<div><p>Modern sustainable farming demands precise water management techniques, particularly for crops like potatoes that require high-quality irrigation to ensure optimal growth. This study presents a novel hybrid metaheuristic framework that combines Dipper Throated Optimization (DTO), a bio-inspired algorithm modeled on bird foraging behavior, with Polar Rose Search (PRS) to enhance deep learning models in predictive water quality assessment. …”
  11. 31

    Results of KNN. by Balraj Preet Kaur (20370832)

    Published 2024
    “…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
  12. 32

    Comparison of key techniques in their literature. by Balraj Preet Kaur (20370832)

    Published 2024
    “…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
  13. 33

    SHAP analysis mean value. by Balraj Preet Kaur (20370832)

    Published 2024
    “…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
  14. 34

    Proposed methodology. by Balraj Preet Kaur (20370832)

    Published 2024
    “…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
  15. 35

    SHAP analysis. by Balraj Preet Kaur (20370832)

    Published 2024
    “…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
  16. 36

    Dataset description. by Balraj Preet Kaur (20370832)

    Published 2024
    “…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
  17. 37

    Results of Extra tree. by Balraj Preet Kaur (20370832)

    Published 2024
    “…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
  18. 38

    Results of Decision tree. by Balraj Preet Kaur (20370832)

    Published 2024
    “…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
  19. 39

    Results of Adaboost. by Balraj Preet Kaur (20370832)

    Published 2024
    “…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
  20. 40

    Results of Random Forest. by Balraj Preet Kaur (20370832)

    Published 2024
    “…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”