Showing 21 - 25 results of 25 for search '(( binary based codon optimization algorithm ) OR ( tiny model improved optimization algorithm ))', query time: 0.41s Refine Results
  1. 21

    Structure of C3K2_UIB network. by Ju Liang (4277062)

    Published 2025
    “…These characteristics impose high demands on detection algorithms in terms of fine-grained feature extraction, cross-scale fusion capability, and occlusion resistance.The YOLOv11s model has significant limitations in practical applications: its feature extraction module has a single semantic representation, the traditional feature pyramid network has limited capability to detect multi-scale targets, and it lacks an effective feature compensation mechanism when targets are occluded.To address these issues, we propose a UAV aerial small target detection algorithm named UAS-YOLO (Universal Inverted Bottleneck with Adaptive BiFPN and Separated and Enhancement Attention module YOLO), which incorporates three key optimizations. …”
  2. 22

    Experimental hyperparameters. by Ju Liang (4277062)

    Published 2025
    “…These characteristics impose high demands on detection algorithms in terms of fine-grained feature extraction, cross-scale fusion capability, and occlusion resistance.The YOLOv11s model has significant limitations in practical applications: its feature extraction module has a single semantic representation, the traditional feature pyramid network has limited capability to detect multi-scale targets, and it lacks an effective feature compensation mechanism when targets are occluded.To address these issues, we propose a UAV aerial small target detection algorithm named UAS-YOLO (Universal Inverted Bottleneck with Adaptive BiFPN and Separated and Enhancement Attention module YOLO), which incorporates three key optimizations. …”
  3. 23

    Architecture of ABiFPN network. by Ju Liang (4277062)

    Published 2025
    “…These characteristics impose high demands on detection algorithms in terms of fine-grained feature extraction, cross-scale fusion capability, and occlusion resistance.The YOLOv11s model has significant limitations in practical applications: its feature extraction module has a single semantic representation, the traditional feature pyramid network has limited capability to detect multi-scale targets, and it lacks an effective feature compensation mechanism when targets are occluded.To address these issues, we propose a UAV aerial small target detection algorithm named UAS-YOLO (Universal Inverted Bottleneck with Adaptive BiFPN and Separated and Enhancement Attention module YOLO), which incorporates three key optimizations. …”
  4. 24

    Detection effect comparison on VisDrone2019. by Ju Liang (4277062)

    Published 2025
    “…These characteristics impose high demands on detection algorithms in terms of fine-grained feature extraction, cross-scale fusion capability, and occlusion resistance.The YOLOv11s model has significant limitations in practical applications: its feature extraction module has a single semantic representation, the traditional feature pyramid network has limited capability to detect multi-scale targets, and it lacks an effective feature compensation mechanism when targets are occluded.To address these issues, we propose a UAV aerial small target detection algorithm named UAS-YOLO (Universal Inverted Bottleneck with Adaptive BiFPN and Separated and Enhancement Attention module YOLO), which incorporates three key optimizations. …”
  5. 25

    Ablation test results. by Ju Liang (4277062)

    Published 2025
    “…These characteristics impose high demands on detection algorithms in terms of fine-grained feature extraction, cross-scale fusion capability, and occlusion resistance.The YOLOv11s model has significant limitations in practical applications: its feature extraction module has a single semantic representation, the traditional feature pyramid network has limited capability to detect multi-scale targets, and it lacks an effective feature compensation mechanism when targets are occluded.To address these issues, we propose a UAV aerial small target detection algorithm named UAS-YOLO (Universal Inverted Bottleneck with Adaptive BiFPN and Separated and Enhancement Attention module YOLO), which incorporates three key optimizations. …”