يعرض 21 - 40 نتائج من 66 نتيجة بحث عن '(( binary based design optimization algorithm ) OR ( binary data design optimization algorithm ))~', وقت الاستعلام: 0.30s تنقيح النتائج
  1. 21
  2. 22
  3. 23
  4. 24
  5. 25
  6. 26

    Parameter settings. حسب Olaide N. Oyelade (14047002)

    منشور في 2023
    الموضوعات:
  7. 27

    Fig 2 - حسب Olaide N. Oyelade (14047002)

    منشور في 2023
    الموضوعات:
  8. 28
  9. 29

    IRBMO vs. meta-heuristic algorithms boxplot. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
  10. 30

    IRBMO vs. feature selection algorithm boxplot. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
  11. 31

    Comparisons between ADAM and NADAM optimizers. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  12. 32

    Parameter settings of the comparison algorithms. حسب Ying Li (38224)

    منشور في 2024
    "…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
  13. 33

    Bayesian sequential design for sensitivity experiments with hybrid responses حسب Yuxia Liu (1779592)

    منشور في 2023
    "…To deal with the problem of complex computation involved in searching for optimal designs, fast algorithms are presented using two strategies to approximate the optimal criterion, denoted as SI-optimal design and Bayesian D-optimal design, respectively. …"
  14. 34

    IRBMO vs. variant comparison adaptation data. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
  15. 35

    An Example of a WPT-MEC Network. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  16. 36

    Related Work Summary. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  17. 37

    Simulation parameters. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  18. 38

    Training losses for N = 10. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  19. 39

    Normalized computation rate for N = 10. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  20. 40

    Summary of Notations Used in this paper. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"