بدائل البحث:
spatial optimization » spatial organization (توسيع البحث), path optimization (توسيع البحث), swarm optimization (توسيع البحث)
dose optimization » based optimization (توسيع البحث), model optimization (توسيع البحث), wolf optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
lines based » lens based (توسيع البحث), genes based (توسيع البحث), lines used (توسيع البحث)
based dose » based case (توسيع البحث), based dosing (توسيع البحث)
spatial optimization » spatial organization (توسيع البحث), path optimization (توسيع البحث), swarm optimization (توسيع البحث)
dose optimization » based optimization (توسيع البحث), model optimization (توسيع البحث), wolf optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
lines based » lens based (توسيع البحث), genes based (توسيع البحث), lines used (توسيع البحث)
based dose » based case (توسيع البحث), based dosing (توسيع البحث)
-
1
-
2
-
3
-
4
Improved LMedS-based for sag measurement accuracy of transmission lines via PSO method
منشور في 2025"…In this study, a self-developed sag measurement platform is proposed, along with a sag measurement model that incorporates spatial coordinate transformation. Furthermore, a transmission line sag measurement method based on an improved Least Median of Squares (LMedS) algorithm is introduced. …"
-
5
-
6
-
7
-
8
-
9
-
10
Image 4_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg
منشور في 2025"…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …"
-
11
Table 2_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.xlsx
منشور في 2025"…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …"
-
12
Table 1_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.xlsx
منشور في 2025"…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …"
-
13
Image 3_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg
منشور في 2025"…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …"
-
14
Image 2_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg
منشور في 2025"…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …"
-
15
Table 3_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.xlsx
منشور في 2025"…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …"
-
16
Image 1_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg
منشور في 2025"…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …"
-
17
Supplementary Data: Biodiversity and Energy System Planning - Queensland 2025
منشور في 2025"…</p><h2>3. VRE Siting Algorithm and Optimization</h2><p><br></p><p dir="ltr">The VRE siting model uses a cost-minimization optimization approach to select the most cost-efficient project sites to meet a projected energy mix target.…"
-
18
<b>Road intersections Data with branch information extracted from OSM</b> & <b>C</b><b>odes to implement the extraction </b>&<b> I</b><b>nstructions on how to </b><b>reproduce each...
منشور في 2025"…This provides the necessary location information for mapping and spatial analyses.</p><h3>(3) <b>Related road lines</b> (fullLine-res.shp/fail-fullLine.shp)</h3><p dir="ltr">The original road lines related to intersections extracted from the road networks were stored in this layer, preserving the inherent attributes of the original dataset. …"
-
19
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
منشور في 2025"…</p><p dir="ltr">These biological metrics were used to define a binary toxicity label: entries were classified as toxic (1) or non-toxic (0) based on thresholds from standardized guidelines (e.g., ISO 10993-5:2009) and literature consensus. …"