يعرض 1 - 17 نتائج من 17 نتيجة بحث عن '(( binary based features elimination algorithm ) OR ( binary image design optimization algorithm ))', وقت الاستعلام: 0.47s تنقيح النتائج
  1. 1
  2. 2
  3. 3

    Sample image for illustration. حسب Indhumathi S. (19173013)

    منشور في 2024
    "…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …"
  4. 4

    Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19. حسب Jiaqing Luo (10975030)

    منشور في 2021
    "…<p>(A). The MCDM algorithm-Stage 1. Preprocessing, this stage is the process of refining the collected raw data to eliminate noise, including correlation analysis and feature selection based on P values. …"
  5. 5

    Quadratic polynomial in 2D image plane. حسب Indhumathi S. (19173013)

    منشور في 2024
    "…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …"
  6. 6

    Comparison analysis of computation time. حسب Indhumathi S. (19173013)

    منشور في 2024
    "…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …"
  7. 7

    Process flow diagram of CBFD. حسب Indhumathi S. (19173013)

    منشور في 2024
    "…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …"
  8. 8

    Precision recall curve. حسب Indhumathi S. (19173013)

    منشور في 2024
    "…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …"
  9. 9
  10. 10

    Data_Sheet_3_sigFeature: Novel Significant Feature Selection Method for Classification of Gene Expression Data Using Support Vector Machine and t Statistic.docx حسب Pijush Das (3196647)

    منشور في 2020
    "…To overcome this limitation of SVM-RFE, we propose a novel feature selection algorithm, termed as “sigFeature” (https://bioconductor.org/packages/sigFeature/), based on SVM and t statistic to discover the differentially significant features along with good performance in classification. …"
  11. 11

    Data_Sheet_2_sigFeature: Novel Significant Feature Selection Method for Classification of Gene Expression Data Using Support Vector Machine and t Statistic.docx حسب Pijush Das (3196647)

    منشور في 2020
    "…To overcome this limitation of SVM-RFE, we propose a novel feature selection algorithm, termed as “sigFeature” (https://bioconductor.org/packages/sigFeature/), based on SVM and t statistic to discover the differentially significant features along with good performance in classification. …"
  12. 12

    Data_Sheet_1_sigFeature: Novel Significant Feature Selection Method for Classification of Gene Expression Data Using Support Vector Machine and t Statistic.docx حسب Pijush Das (3196647)

    منشور في 2020
    "…To overcome this limitation of SVM-RFE, we propose a novel feature selection algorithm, termed as “sigFeature” (https://bioconductor.org/packages/sigFeature/), based on SVM and t statistic to discover the differentially significant features along with good performance in classification. …"
  13. 13

    Fortran & C++: design fractal-type optical diffractive element حسب I-Lin Ho (13768960)

    منشور في 2022
    "…</p> <p>(2) calculate diffraction fields for fractal and/or grid-matrix (binary) phase-holograms.</p> <p>(3) optimize the fractal and/or grid-matrix holograms for given target diffraction images, using annealing algorithms. …"
  14. 14

    Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf حسب Cecilia Lindig-León (7889777)

    منشور في 2020
    "…And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. …"
  15. 15

    Thesis-RAMIS-Figs_Slides حسب Felipe Santibañez-Leal (10967991)

    منشور في 2024
    "…<br><br>Finally, although the developed concepts, ideas and algorithms have been developed for inverse problems in geostatistics, the results are applicable to a wide range of disciplines where similar sampling problems need to be faced, included but not limited to design of communication networks, optimal integration and communication of swarms of robots and drones, remote sensing.…"
  16. 16

    DataSheet_1_Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer.docx حسب Yuhong Huang (115702)

    منشور في 2021
    "…We applied several feature selection strategies including the least absolute shrinkage and selection operator (LASSO), and recursive feature elimination (RFE), the maximum relevance minimum redundancy (mRMR), Boruta and Pearson correlation analysis, to select the most optimal features. …"
  17. 17

    DataSheet_1_Preoperatively Estimating the Malignant Potential of Mediastinal Lymph Nodes: A Pilot Study Toward Establishing a Robust Radiomics Model Based on Contrast-Enhanced CT I... حسب Mengshi Dong (5181833)

    منشور في 2021
    "…Feature selection was performed with least absolute shrinkage and selection operator (LASSO) binary logistic regression. …"