Search alternatives:
forest classification » text classification (Expand Search), risk classification (Expand Search), disease classification (Expand Search)
based optimization » whale optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based forest » based forms (Expand Search), based forecasts (Expand Search), based stress (Expand Search)
binary 2 » binary _ (Expand Search), binary b (Expand Search)
2 based » _ based (Expand Search), 1 based (Expand Search), ai based (Expand Search)
forest classification » text classification (Expand Search), risk classification (Expand Search), disease classification (Expand Search)
based optimization » whale optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based forest » based forms (Expand Search), based forecasts (Expand Search), based stress (Expand Search)
binary 2 » binary _ (Expand Search), binary b (Expand Search)
2 based » _ based (Expand Search), 1 based (Expand Search), ai based (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
MSE for ILSTM algorithm in binary classification.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
9
Model 1: All Variables for binary classification.
Published 2025“…Six machine learning algorithms, including Random Forest, were applied and their performance was investigated in balanced and unbalanced data sets with respect to binary and multiclass classification scenarios. …”
-
10
-
11
Class distribution for binary classes.
Published 2025“…Six machine learning algorithms, including Random Forest, were applied and their performance was investigated in balanced and unbalanced data sets with respect to binary and multiclass classification scenarios. …”
-
12
Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
Published 2025Subjects: -
13
-
14
Data Sheet 1_Bundled assessment to replace on-road test on driving function in stroke patients: a binary classification model via random forest.docx
Published 2025“…The subject was classified as either Success or Unsuccess group according to whether they had completed the on-road test. A random forest algorithm was then applied to construct a binary classification model based on the data obtained from the two groups.…”
-
15
ML algorithms used in this study.
Published 2025“…Six machine learning algorithms, including Random Forest, were applied and their performance was investigated in balanced and unbalanced data sets with respect to binary and multiclass classification scenarios. …”
-
16
-
17
-
18
-
19
Supplementary file 1_Comparative evaluation of fast-learning classification algorithms for urban forest tree species identification using EO-1 hyperion hyperspectral imagery.docx
Published 2025“…</p>Methods<p>Thirteen supervised classification algorithms were comparatively evaluated, encompassing traditional spectral/statistical classifiers—Maximum Likelihood, Mahalanobis Distance, Minimum Distance, Parallelepiped, Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and Binary Encoding—and machine learning algorithms including Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN). …”
-
20
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
Published 2025“…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …”