بدائل البحث:
iterative optimization » objective optimization (توسيع البحث)
robust optimization » process optimization (توسيع البحث), robust estimation (توسيع البحث), joint optimization (توسيع البحث)
based iterative » based integrative (توسيع البحث), based generative (توسيع البحث), based alternatives (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary b » binary _ (توسيع البحث)
b robust » _ robust (توسيع البحث), a robust (توسيع البحث)
iterative optimization » objective optimization (توسيع البحث)
robust optimization » process optimization (توسيع البحث), robust estimation (توسيع البحث), joint optimization (توسيع البحث)
based iterative » based integrative (توسيع البحث), based generative (توسيع البحث), based alternatives (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary b » binary _ (توسيع البحث)
b robust » _ robust (توسيع البحث), a robust (توسيع البحث)
-
21
Summary of LITNET-2020 dataset.
منشور في 2023"…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
22
SHAP analysis for LITNET-2020 dataset.
منشور في 2023"…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
23
Comparison of intrusion detection systems.
منشور في 2023"…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
24
Parameter setting for CBOA and PSO.
منشور في 2023"…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
25
NSL-KDD dataset description.
منشور في 2023"…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
26
The architecture of LSTM cell.
منشور في 2023"…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
27
The architecture of ILSTM.
منشور في 2023"…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
28
Parameter setting for LSTM.
منشور في 2023"…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
29
LITNET-2020 data splitting approach.
منشور في 2023"…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
30
Transformation of symbolic features in NSL-KDD.
منشور في 2023"…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
31
Supplementary Material 8
منشور في 2025"…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…"
-
32
Models and Dataset
منشور في 2025"…<p dir="ltr"><b>P3DE (Parameter-less Population Pyramid with Deep Ensemble):</b><br>P3DE is a hybrid feature selection framework that combines the Parameter-less Population Pyramid (P3) metaheuristic optimization algorithm with a deep ensemble of autoencoders. …"
-
33
Seed mix selection model
منشور في 2022"…For each data set, we initialized a starting population of plant species equal to the desired number of plant species in the mix. The genetic algorithm then operated over 1000 iterations, applying crossover and mutation processes to optimize bee richness. …"