Showing 41 - 60 results of 62 for search '(( binary based iterative optimization algorithm ) OR ( binary best model optimization algorithm ))', query time: 0.50s Refine Results
  1. 41

    Details of 23 basic benchmark functions. by Ying Li (38224)

    Published 2024
    “…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
  2. 42

    Related researches. by Ying Li (38224)

    Published 2024
    “…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
  3. 43

    S1 Dataset - by Ying Li (38224)

    Published 2024
    “…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
  4. 44

    Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf by Muhammad Awais (263096)

    Published 2024
    “…To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …”
  5. 45

    Models and Dataset by M RN (9866504)

    Published 2025
    “…</p><p dir="ltr"><br></p><p dir="ltr"><b>RAO (Rao Optimization Algorithm):</b><br>RAO is a parameter-less optimization algorithm that updates solutions based on simple arithmetic operations involving the best and worst individuals in the population. …”
  6. 46

    Summary of LITNET-2020 dataset. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
  7. 47

    SHAP analysis for LITNET-2020 dataset. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
  8. 48

    Comparison of intrusion detection systems. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
  9. 49

    Parameter setting for CBOA and PSO. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
  10. 50

    NSL-KDD dataset description. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
  11. 51

    The architecture of LSTM cell. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
  12. 52

    The architecture of ILSTM. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
  13. 53

    Parameter setting for LSTM. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
  14. 54

    LITNET-2020 data splitting approach. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
  15. 55

    Transformation of symbolic features in NSL-KDD. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
  16. 56

    Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP by Xiaoyuan Wang (492534)

    Published 2022
    “…In this paper, a non-invasive and low-cost method of fatigue driving state identification based on genetic algorithm optimization of generalized regression neural network model is proposed. …”
  17. 57

    DataSheet_1_Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer.docx by Yuhong Huang (115702)

    Published 2021
    “…We applied several feature selection strategies including the least absolute shrinkage and selection operator (LASSO), and recursive feature elimination (RFE), the maximum relevance minimum redundancy (mRMR), Boruta and Pearson correlation analysis, to select the most optimal features. We then built 120 diagnostic models using distinct classification algorithms and feature sets divided by MRI sequences and selection strategies to predict molecular subtype and AR expression of breast cancer in the testing dataset of leave-one-out cross-validation (LOOCV). …”
  18. 58

    Table_1_iRNA5hmC: The First Predictor to Identify RNA 5-Hydroxymethylcytosine Modifications Using Machine Learning.docx by Yuan Liu (88411)

    Published 2020
    “…Afterward, we utilized a two-stage feature space optimization strategy to improve the feature representation ability, and trained a predictive model using support vector machine (SVM). …”
  19. 59

    Supplementary Material 8 by Nishitha R Kumar (19750617)

    Published 2025
    “…</li><li><b>Adaboost: </b>A boosting algorithm that combines weak classifiers iteratively, refining predictions and improving the identification of antimicrobial resistance patterns.…”
  20. 60

    An intelligent decision-making system for embryo transfer in reproductive technology: a machine learning-based approach by Sanaa Badr (20628838)

    Published 2025
    “…Binary classification models were developed to classify cases into two groups: those transferring two or fewer embryos and those transferring three or four. …”