Showing 21 - 40 results of 52 for search '(( binary based iterative optimization algorithm ) OR ( binary most based optimization algorithm ))', query time: 0.58s Refine Results
  1. 21

    Descriptive statistics for variables. by Meng Cao (105914)

    Published 2025
    “…According to the SHAP analysis of the optimal model, the most influential predictors are age, education level, and hemoglobin concentration.…”
  2. 22

    SHAP summary plot. by Meng Cao (105914)

    Published 2025
    “…According to the SHAP analysis of the optimal model, the most influential predictors are age, education level, and hemoglobin concentration.…”
  3. 23

    ROC curves for the test set of four models. by Meng Cao (105914)

    Published 2025
    “…According to the SHAP analysis of the optimal model, the most influential predictors are age, education level, and hemoglobin concentration.…”
  4. 24

    Display of the web prediction interface. by Meng Cao (105914)

    Published 2025
    “…According to the SHAP analysis of the optimal model, the most influential predictors are age, education level, and hemoglobin concentration.…”
  5. 25

    Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19. by Jiaqing Luo (10975030)

    Published 2021
    “…<p>(A). The MCDM algorithm-Stage 1. Preprocessing, this stage is the process of refining the collected raw data to eliminate noise, including correlation analysis and feature selection based on P values. …”
  6. 26

    Triplet Matching for Estimating Causal Effects With Three Treatment Arms: A Comparative Study of Mortality by Trauma Center Level by Giovanni Nattino (561797)

    Published 2021
    “…Our algorithm outperforms the nearest neighbor algorithm and is shown to produce matched samples with total distance no larger than twice the optimal distance. …”
  7. 27

    Summary of LITNET-2020 dataset. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
  8. 28

    SHAP analysis for LITNET-2020 dataset. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
  9. 29

    Comparison of intrusion detection systems. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
  10. 30

    Parameter setting for CBOA and PSO. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
  11. 31

    NSL-KDD dataset description. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
  12. 32

    The architecture of LSTM cell. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
  13. 33

    The architecture of ILSTM. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
  14. 34

    Parameter setting for LSTM. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
  15. 35

    LITNET-2020 data splitting approach. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
  16. 36

    Transformation of symbolic features in NSL-KDD. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
  17. 37

    datasheet1_Graph Neural Networks for Maximum Constraint Satisfaction.pdf by Jan Tönshoff (10192709)

    Published 2021
    “…Despite being generic, we show that our approach matches or surpasses most greedy and semi-definite programming based algorithms and sometimes even outperforms state-of-the-art heuristics for the specific problems.…”
  18. 38

    Supplementary file 1_Comparative evaluation of fast-learning classification algorithms for urban forest tree species identification using EO-1 hyperion hyperspectral imagery.docx by Veera Narayana Balabathina (22518524)

    Published 2025
    “…</p>Methods<p>Thirteen supervised classification algorithms were comparatively evaluated, encompassing traditional spectral/statistical classifiers—Maximum Likelihood, Mahalanobis Distance, Minimum Distance, Parallelepiped, Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and Binary Encoding—and machine learning algorithms including Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN). …”
  19. 39

    Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat. by Enrico Bertozzi (22461709)

    Published 2025
    “…<br>The consistency of the results across different kernels demonstrates that the information contained in the habitat, by itself, leads to a very simple optimal decision rule (mostly the prediction of the most frequent class per habitat), which cannot be improved solely by model adjustments. …”
  20. 40

    Table_1_Computational prediction of promotors in Agrobacterium tumefaciens strain C58 by using the machine learning technique.DOCX by Hasan Zulfiqar (12117255)

    Published 2023
    “…In the model, promotor sequences were encoded by three different kinds of feature descriptors, namely, accumulated nucleotide frequency, k-mer nucleotide composition, and binary encodings. The obtained features were optimized by using correlation and the mRMR-based algorithm. …”