بدائل البحث:
iterative optimization » objective optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
based iterative » based integrative (توسيع البحث), based generative (توسيع البحث), based alternatives (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary task » binary mask (توسيع البحث)
task based » risk based (توسيع البحث)
iterative optimization » objective optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
based iterative » based integrative (توسيع البحث), based generative (توسيع البحث), based alternatives (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary task » binary mask (توسيع البحث)
task based » risk based (توسيع البحث)
-
41
Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP
منشور في 2022"…In this paper, a non-invasive and low-cost method of fatigue driving state identification based on genetic algorithm optimization of generalized regression neural network model is proposed. …"
-
42
Sample image for illustration.
منشور في 2024"…<div><p>Feature description is a critical task in Augmented Reality Tracking. This article introduces a Convex Based Feature Descriptor (CBFD) system designed to withstand rotation, lighting, and blur variations while remaining computationally efficient. …"
-
43
Comparison analysis of computation time.
منشور في 2024"…<div><p>Feature description is a critical task in Augmented Reality Tracking. This article introduces a Convex Based Feature Descriptor (CBFD) system designed to withstand rotation, lighting, and blur variations while remaining computationally efficient. …"
-
44
Process flow diagram of CBFD.
منشور في 2024"…<div><p>Feature description is a critical task in Augmented Reality Tracking. This article introduces a Convex Based Feature Descriptor (CBFD) system designed to withstand rotation, lighting, and blur variations while remaining computationally efficient. …"
-
45
Precision recall curve.
منشور في 2024"…<div><p>Feature description is a critical task in Augmented Reality Tracking. This article introduces a Convex Based Feature Descriptor (CBFD) system designed to withstand rotation, lighting, and blur variations while remaining computationally efficient. …"
-
46
Quadratic polynomial in 2D image plane.
منشور في 2024"…<div><p>Feature description is a critical task in Augmented Reality Tracking. This article introduces a Convex Based Feature Descriptor (CBFD) system designed to withstand rotation, lighting, and blur variations while remaining computationally efficient. …"
-
47
Summary of LITNET-2020 dataset.
منشور في 2023"…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
48
SHAP analysis for LITNET-2020 dataset.
منشور في 2023"…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
49
Comparison of intrusion detection systems.
منشور في 2023"…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
50
Parameter setting for CBOA and PSO.
منشور في 2023"…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
51
NSL-KDD dataset description.
منشور في 2023"…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
52
The architecture of LSTM cell.
منشور في 2023"…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
53
The architecture of ILSTM.
منشور في 2023"…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
54
Parameter setting for LSTM.
منشور في 2023"…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
55
LITNET-2020 data splitting approach.
منشور في 2023"…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
56
Transformation of symbolic features in NSL-KDD.
منشور في 2023"…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
57
Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf
منشور في 2020"…In this way, for each binary problem, the CSP algorithm produces features to determine if the specific body part is engaged in the task or not. …"
-
58
Models and Dataset
منشور في 2025"…</p><p dir="ltr"><br></p><p dir="ltr"><b>RAO (Rao Optimization Algorithm):</b><br>RAO is a parameter-less optimization algorithm that updates solutions based on simple arithmetic operations involving the best and worst individuals in the population. …"
-
59
Supplementary Material 8
منشور في 2025"…</li><li><b>Adaboost: </b>A boosting algorithm that combines weak classifiers iteratively, refining predictions and improving the identification of antimicrobial resistance patterns.…"
-
60
Seed mix selection model
منشور في 2022"…For each data set, we initialized a starting population of plant species equal to the desired number of plant species in the mix. The genetic algorithm then operated over 1000 iterations, applying crossover and mutation processes to optimize bee richness. …"