Search alternatives:
lead optimization » global optimization (Expand Search), swarm optimization (Expand Search), whale optimization (Expand Search)
wolf optimization » whale optimization (Expand Search), swarm optimization (Expand Search), _ optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
primary a » primary _ (Expand Search), primary i (Expand Search), primary aim (Expand Search)
a wolf » _ wolf (Expand Search)
lead optimization » global optimization (Expand Search), swarm optimization (Expand Search), whale optimization (Expand Search)
wolf optimization » whale optimization (Expand Search), swarm optimization (Expand Search), _ optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
primary a » primary _ (Expand Search), primary i (Expand Search), primary aim (Expand Search)
a wolf » _ wolf (Expand Search)
-
1
Parameter settings for algorithms.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
2
Parameter settings for algorithms.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
3
Average runtime of different algorithms.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
4
Average runtime of different algorithms.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
5
Flowchart of GJO-GWO algorithm.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
6
Detailed information of benchmark functions.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
7
Evaluation metrics of the models’ performance.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
8
Detailed information of datasets.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
9
Friedman test results.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
10
Average number of selected features.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
11
Wilcoxon rank sum test results.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
12
Wilcoxon rank sum test results.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
13
Average number of selected features.
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
14
S1 Data -
Published 2024“…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
-
15
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
16
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
17
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
18
<i>hi</i>PRS algorithm process flow.
Published 2023“…From this dataset we can compute the MI between each interaction and the outcome and <b>(D)</b> obtain a ranked list (<i>I</i><sub><i>δ</i></sub>) based on this metric. <b>(E)</b> Starting from the interaction at the top of <i>I</i><sub><i>δ</i></sub>, <i>hi</i>PRS constructs <i>I</i><sub><i>K</i></sub>, selecting <i>K</i> (where <i>K</i> is user-specified) terms through the greedy optimization of the ratio between MI (<i>relevance</i>) and a suitable measure of similarity for interactions (<i>redundancy)</i> (cf. …”
-
19
Pseudo Code of RBMO.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
20
P-value on CEC-2017(Dim = 30).
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”