بدائل البحث:
lesion classification » emotion classification (توسيع البحث), series classification (توسيع البحث), shot classification (توسيع البحث)
wolf optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), _ optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
based lesion » based design (توسيع البحث), based fusion (توسيع البحث), based decision (توسيع البحث)
binary 2 » binary _ (توسيع البحث), binary b (توسيع البحث)
2 wolf » _ wolf (توسيع البحث), a wolf (توسيع البحث)
lesion classification » emotion classification (توسيع البحث), series classification (توسيع البحث), shot classification (توسيع البحث)
wolf optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), _ optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
based lesion » based design (توسيع البحث), based fusion (توسيع البحث), based decision (توسيع البحث)
binary 2 » binary _ (توسيع البحث), binary b (توسيع البحث)
2 wolf » _ wolf (توسيع البحث), a wolf (توسيع البحث)
-
1
-
2
Table_1_Classification of MR-Detected Additional Lesions in Patients With Breast Cancer Using a Combination of Radiomics Analysis and Machine Learning.docx
منشور في 2021"…Objective<p>This study was conducted in order to investigate the feasibility of using radiomics analysis (RA) with machine learning algorithms based on breast magnetic resonance (MR) images for discriminating malignant from benign MR-detected additional lesions in patients with primary breast cancer.…"
-
3
Table_1_Classification of MR-Detected Additional Lesions in Patients With Breast Cancer Using a Combination of Radiomics Analysis and Machine Learning.docx
منشور في 2021"…Objective<p>This study was conducted in order to investigate the feasibility of using radiomics analysis (RA) with machine learning algorithms based on breast magnetic resonance (MR) images for discriminating malignant from benign MR-detected additional lesions in patients with primary breast cancer.…"
-
4
Dataset selection process and exclusion criteria.
منشور في 2020"…**Inherently impossible cases refer to the ones where the lesion could not be exactly located based on metadata (clinical/pathologic diagnoses and record on the biopsy site). …"
-
5
DataSheet_2_MRI-Based Radiomics to Differentiate between Benign and Malignant Parotid Tumors With External Validation.pdf
منشور في 2021"…The model with the final feature set was achieved using the support vector machine binary classification algorithm.</p>Results<p>Models for discriminating between Warthin’s and malignant tumors, benign and Warthin’s tumors and benign and malignant tumors had an accuracy of 86.7%, 91.9% and 80.4%, respectively. …"
-
6
DataSheet_1_MRI-Based Radiomics to Differentiate between Benign and Malignant Parotid Tumors With External Validation.xlsx
منشور في 2021"…The model with the final feature set was achieved using the support vector machine binary classification algorithm.</p>Results<p>Models for discriminating between Warthin’s and malignant tumors, benign and Warthin’s tumors and benign and malignant tumors had an accuracy of 86.7%, 91.9% and 80.4%, respectively. …"