Search alternatives:
model optimization » codon optimization (Expand Search), global optimization (Expand Search), wolf optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
linear layer » inner layer (Expand Search), smear layer (Expand Search)
layer based » laser based (Expand Search), paper based (Expand Search), water based (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), wolf optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
linear layer » inner layer (Expand Search), smear layer (Expand Search)
layer based » laser based (Expand Search), paper based (Expand Search), water based (Expand Search)
-
1
-
2
-
3
The Effect of Machine Learning Algorithms on the Prediction of Layer-by-Layer Coating Properties
Published 2023“…Recently, we have demonstrated a preliminary ML-based model for coating thickness prediction. In this paper, we compared several ML algorithms for optimizing a methodology for coating thickness prediction, namely, linear regression, Support Vector Regressor, Random Forest Regressor, and Extra Tree Regressor. …”
-
4
MSE for ILSTM algorithm in binary classification.
Published 2023“…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
-
5
Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
Published 2025Subjects: -
6
DE algorithm flow.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
7
Test results of different algorithms.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
8
-
9
Algorithm for generating hyperparameter.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
10
Results of machine learning algorithm.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
11
ROC comparison of machine learning algorithm.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
12
-
13
-
14
Best optimizer results of Lightbgm.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
15
Best optimizer results of Adaboost.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
16
Best optimizer results of Lightbgm.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
17
Random forest with hyperparameter optimization.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
18
Best optimizer results of KNN.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
19
Best optimizer results of KNN.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
20
Ensemble model architecture.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”