Search alternatives:
improves optimization » improve optimization (Expand Search), process optimization (Expand Search), improved utilization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
improves optimization » improve optimization (Expand Search), process optimization (Expand Search), improved utilization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
-
101
Test results of different models on VisDrone2019.
Published 2025“…These characteristics impose high demands on detection algorithms in terms of fine-grained feature extraction, cross-scale fusion capability, and occlusion resistance.The YOLOv11s model has significant limitations in practical applications: its feature extraction module has a single semantic representation, the traditional feature pyramid network has limited capability to detect multi-scale targets, and it lacks an effective feature compensation mechanism when targets are occluded.To address these issues, we propose a UAV aerial small target detection algorithm named UAS-YOLO (Universal Inverted Bottleneck with Adaptive BiFPN and Separated and Enhancement Attention module YOLO), which incorporates three key optimizations. …”
-
102
-
103
Testing results for classifying AD, MCI and NC.
Published 2024“…The model further showed superior results on binary classification compared with existing methods. …”
-
104
Pseudo Code of RBMO.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
105
P-value on CEC-2017(Dim = 30).
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
106
Memory storage behavior.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
107
Elite search behavior.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
108
Description of the datasets.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
109
S and V shaped transfer functions.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
110
S- and V-Type transfer function diagrams.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
111
Collaborative hunting behavior.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
112
Friedman average rank sum test results.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
113
IRBMO vs. variant comparison adaptation data.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
114
Analysis and design of algorithms for the manufacturing process of integrated circuits
Published 2023“…Additionally, the results obtained from our new ILP model indicate that our genetic algorithm results are very close to the optimal values.…”
-
115
-
116
Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP
Published 2022“…In this paper, a non-invasive and low-cost method of fatigue driving state identification based on genetic algorithm optimization of generalized regression neural network model is proposed. …”
-
117
Psoas muscle CT radiomics-based machine learning models to predict response to infliximab in patients with Crohn’s disease
Published 2025“…</p> <p>Psoas computerized tomography radiomics-based ML models effectively predict the response of patients with CD to IFX therapy, with the eXtreme Gradient Boosting model exhibiting superior performance.…”
-
118
Summary of LITNET-2020 dataset.
Published 2023“…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
-
119
SHAP analysis for LITNET-2020 dataset.
Published 2023“…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
-
120
Comparison of intrusion detection systems.
Published 2023“…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”