بدائل البحث:
network optimization » swarm optimization (توسيع البحث), wolf optimization (توسيع البحث)
from optimization » fox optimization (توسيع البحث), swarm optimization (توسيع البحث), codon optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
network optimization » swarm optimization (توسيع البحث), wolf optimization (توسيع البحث)
from optimization » fox optimization (توسيع البحث), swarm optimization (توسيع البحث), codon optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
-
1
MSE for ILSTM algorithm in binary classification.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
2
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
منشور في 2025"…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …"
-
3
Secure MANET routing with blockchain-enhanced latent encoder coupled GANs and BEPO optimization
منشور في 2025"…To tackle these challenges, this paper proposes the Blockchain Based Trusted Distributed Routing Scheme for MANET using Latent Encoder Coupled Generative Adversarial Network Optimized with Binary Emperor Penguin Optimizer (LEGAN-BEPO-BCMANET). …"
-
4
A* Path-Finding Algorithm to Determine Cell Connections
منشور في 2025"…To address this, the research integrates a modified A* pathfinding algorithm with a U-Net convolutional neural network, a custom statistical binary classification method, and a personalized Min-Max connectivity threshold to automate the detection of astrocyte connectivity.…"
-
5
-
6
-
7
-
8
-
9
-
10
-
11
SHAP bar plot.
منشور في 2025"…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …"
-
12
Sample screening flowchart.
منشور في 2025"…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …"
-
13
Descriptive statistics for variables.
منشور في 2025"…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …"
-
14
SHAP summary plot.
منشور في 2025"…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …"
-
15
ROC curves for the test set of four models.
منشور في 2025"…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …"
-
16
Display of the web prediction interface.
منشور في 2025"…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …"
-
17
Proposed Algorithm.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
18
-
19
Comparisons between ADAM and NADAM optimizers.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
20
DataSheet1_Improving the convergence of an iterative algorithm for solving arbitrary linear equation systems using classical or quantum binary optimization.pdf
منشور في 2024"…<p>Recent advancements in quantum computing and quantum-inspired algorithms have sparked renewed interest in binary optimization. …"