بدائل البحث:
network optimization » swarm optimization (توسيع البحث), wolf optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary risk » primary risk (توسيع البحث), dietary risk (توسيع البحث)
risk global » rising global (توسيع البحث), first global (توسيع البحث)
network optimization » swarm optimization (توسيع البحث), wolf optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary risk » primary risk (توسيع البحث), dietary risk (توسيع البحث)
risk global » rising global (توسيع البحث), first global (توسيع البحث)
-
21
Large-scale dataset comparative analysis using the number of features selected.
منشور في 2023الموضوعات: -
22
-
23
-
24
-
25
-
26
-
27
-
28
-
29
-
30
Small-scale dataset comparative analysis using the number of features selected.
منشور في 2023الموضوعات: -
31
-
32
-
33
-
34
-
35
-
36
-
37
ROC curve for binary classification.
منشور في 2024"…<div><p>This study aims to develop an optimally performing convolutional neural network to classify Alzheimer’s disease into mild cognitive impairment, normal controls, or Alzheimer’s disease classes using a magnetic resonance imaging dataset. …"
-
38
Confusion matrix for binary classification.
منشور في 2024"…<div><p>This study aims to develop an optimally performing convolutional neural network to classify Alzheimer’s disease into mild cognitive impairment, normal controls, or Alzheimer’s disease classes using a magnetic resonance imaging dataset. …"
-
39
Related Work Summary.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
40
Simulation parameters.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"