يعرض 21 - 40 نتائج من 76 نتيجة بحث عن '(( binary based network optimization algorithm ) OR ( binary risk global optimization algorithm ))', وقت الاستعلام: 0.50s تنقيح النتائج
  1. 21
  2. 22
  3. 23
  4. 24
  5. 25

    Fig 7 - حسب Olaide N. Oyelade (14047002)

    منشور في 2023
    الموضوعات:
  6. 26

    Fig 4 - حسب Olaide N. Oyelade (14047002)

    منشور في 2023
    الموضوعات:
  7. 27
  8. 28
  9. 29
  10. 30
  11. 31
  12. 32
  13. 33

    Parameter settings. حسب Olaide N. Oyelade (14047002)

    منشور في 2023
    الموضوعات:
  14. 34

    Fig 2 - حسب Olaide N. Oyelade (14047002)

    منشور في 2023
    الموضوعات:
  15. 35
  16. 36
  17. 37

    ROC curve for binary classification. حسب Nicodemus Songose Awarayi (18414494)

    منشور في 2024
    "…<div><p>This study aims to develop an optimally performing convolutional neural network to classify Alzheimer’s disease into mild cognitive impairment, normal controls, or Alzheimer’s disease classes using a magnetic resonance imaging dataset. …"
  18. 38

    Confusion matrix for binary classification. حسب Nicodemus Songose Awarayi (18414494)

    منشور في 2024
    "…<div><p>This study aims to develop an optimally performing convolutional neural network to classify Alzheimer’s disease into mild cognitive impairment, normal controls, or Alzheimer’s disease classes using a magnetic resonance imaging dataset. …"
  19. 39

    Related Work Summary. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  20. 40

    Simulation parameters. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"