Search alternatives:
all optimization » art optimization (Expand Search), ai optimization (Expand Search), whale optimization (Expand Search)
based objective » based object (Expand Search), based selective (Expand Search), based objects (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based all » based small (Expand Search), based cell (Expand Search), based ap (Expand Search)
all optimization » art optimization (Expand Search), ai optimization (Expand Search), whale optimization (Expand Search)
based objective » based object (Expand Search), based selective (Expand Search), based objects (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based all » based small (Expand Search), based cell (Expand Search), based ap (Expand Search)
-
1
-
2
-
3
SHAP bar plot.
Published 2025“…<div><p>Background</p><p>The high prevalence of cognitive impairment (CI) in Chronic kidney disease (CKD) patients impacts their quality of life and prognosis, yet risk prediction models for CI in this population remain underexplored.</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
-
4
Sample screening flowchart.
Published 2025“…<div><p>Background</p><p>The high prevalence of cognitive impairment (CI) in Chronic kidney disease (CKD) patients impacts their quality of life and prognosis, yet risk prediction models for CI in this population remain underexplored.</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
-
5
Descriptive statistics for variables.
Published 2025“…<div><p>Background</p><p>The high prevalence of cognitive impairment (CI) in Chronic kidney disease (CKD) patients impacts their quality of life and prognosis, yet risk prediction models for CI in this population remain underexplored.</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
-
6
SHAP summary plot.
Published 2025“…<div><p>Background</p><p>The high prevalence of cognitive impairment (CI) in Chronic kidney disease (CKD) patients impacts their quality of life and prognosis, yet risk prediction models for CI in this population remain underexplored.</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
-
7
ROC curves for the test set of four models.
Published 2025“…<div><p>Background</p><p>The high prevalence of cognitive impairment (CI) in Chronic kidney disease (CKD) patients impacts their quality of life and prognosis, yet risk prediction models for CI in this population remain underexplored.</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
-
8
Display of the web prediction interface.
Published 2025“…<div><p>Background</p><p>The high prevalence of cognitive impairment (CI) in Chronic kidney disease (CKD) patients impacts their quality of life and prognosis, yet risk prediction models for CI in this population remain underexplored.</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
-
9
DE algorithm flow.
Published 2025“…In the experiments, optimization metrics such as kinematic optimization rate (calculated based on the shortest path and connectivity between functional areas), space utilization rate (calculated by the ratio of room area to total usable space), and functional fitness (based on the weighted sum of users’ subjective evaluations and functional matches) all perform well. …”
-
10
Test results of different algorithms.
Published 2025“…In the experiments, optimization metrics such as kinematic optimization rate (calculated based on the shortest path and connectivity between functional areas), space utilization rate (calculated by the ratio of room area to total usable space), and functional fitness (based on the weighted sum of users’ subjective evaluations and functional matches) all perform well. …”
-
11
-
12
A new fast filtering algorithm for a 3D point cloud based on RGB-D information
Published 2019“…This method aligns the color image to the depth image, and the color mapping image is converted to an HSV image. Then, the optimal segmentation threshold of the V image that is calculated by using the Otsu algorithm is applied to segment the color mapping image into a binary image, which is used to extract the valid point cloud from the original point cloud with outliers. …”
-
13
Algorithm for generating hyperparameter.
Published 2024“…The results obtained show that the proposed model has superior prediction accuracy in comparison to its counterparts. Moreover, among all the hyperparameter-optimized algorithms, adaboost algorithm outperformed all the other hyperparameter-optimized algorithms. …”
-
14
Results of machine learning algorithm.
Published 2024“…The results obtained show that the proposed model has superior prediction accuracy in comparison to its counterparts. Moreover, among all the hyperparameter-optimized algorithms, adaboost algorithm outperformed all the other hyperparameter-optimized algorithms. …”
-
15
ROC comparison of machine learning algorithm.
Published 2024“…The results obtained show that the proposed model has superior prediction accuracy in comparison to its counterparts. Moreover, among all the hyperparameter-optimized algorithms, adaboost algorithm outperformed all the other hyperparameter-optimized algorithms. …”
-
16
-
17
Proposed Algorithm.
Published 2025“…The objective is to optimize binary offloading decisions under dynamic wireless channel conditions and energy harvesting constraints. …”
-
18
Analysis and design of algorithms for the manufacturing process of integrated circuits
Published 2023“…The (approximate) solution proposals of state-of-the-art methods include rule-based approaches, genetic algorithms, and reinforcement learning. …”
-
19
Best optimizer results of Lightbgm.
Published 2024“…The results obtained show that the proposed model has superior prediction accuracy in comparison to its counterparts. Moreover, among all the hyperparameter-optimized algorithms, adaboost algorithm outperformed all the other hyperparameter-optimized algorithms. …”
-
20
Best optimizer results of Adaboost.
Published 2024“…The results obtained show that the proposed model has superior prediction accuracy in comparison to its counterparts. Moreover, among all the hyperparameter-optimized algorithms, adaboost algorithm outperformed all the other hyperparameter-optimized algorithms. …”