بدائل البحث:
phase optimization » whale optimization (توسيع البحث), based optimization (توسيع البحث), path optimization (توسيع البحث)
d optimization » _ optimization (توسيع البحث), b optimization (توسيع البحث), led optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
based phase » based case (توسيع البحث)
based d » based 3d (توسيع البحث), based _ (توسيع البحث), based 2 (توسيع البحث)
phase optimization » whale optimization (توسيع البحث), based optimization (توسيع البحث), path optimization (توسيع البحث)
d optimization » _ optimization (توسيع البحث), b optimization (توسيع البحث), led optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
based phase » based case (توسيع البحث)
based d » based 3d (توسيع البحث), based _ (توسيع البحث), based 2 (توسيع البحث)
-
21
-
22
Large-scale dataset comparative analysis using the number of features selected.
منشور في 2023الموضوعات: -
23
-
24
-
25
-
26
-
27
-
28
-
29
Small-scale dataset comparative analysis using the number of features selected.
منشور في 2023الموضوعات: -
30
-
31
-
32
-
33
<i>hi</i>PRS algorithm process flow.
منشور في 2023"…From this dataset we can compute the MI between each interaction and the outcome and <b>(D)</b> obtain a ranked list (<i>I</i><sub><i>δ</i></sub>) based on this metric. …"
-
34
Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19.
منشور في 2021"…EVAL1: The correlation between input features <i>x</i>∈<i>X</i> and output features y∈<i>Y</i>, <i>R</i>[<i>x,y</i>] or <i>R</i>[<i>y,x</i>]; EVAL2: The correlation between input features <i>x</i>∈<i>X</i> and labeled features v∈<i>L</i>, <i>R</i>[<i>x,v</i>] or <i>R</i>[<i>v,x</i>]; Subset: The optimal input feature subset. (D). The MCDM algorithm-Stage 4. …"
-
35
-
36
-
37
Flowchart scheme of the ML-based model.
منشور في 2024"…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …"
-
38
-
39
-
40
Bayesian sequential design for sensitivity experiments with hybrid responses
منشور في 2023"…To deal with the problem of complex computation involved in searching for optimal designs, fast algorithms are presented using two strategies to approximate the optimal criterion, denoted as SI-optimal design and Bayesian D-optimal design, respectively. …"