بدائل البحث:
estimation algorithm » optimization algorithms (توسيع البحث), maximization algorithm (توسيع البحث), detection algorithm (توسيع البحث)
process optimization » model optimization (توسيع البحث)
phase process » phase proteins (توسيع البحث), whole process (توسيع البحث), phase protein (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary phase » binary image (توسيع البحث), final phase (توسيع البحث)
based pose » based case (توسيع البحث), based probes (توسيع البحث)
estimation algorithm » optimization algorithms (توسيع البحث), maximization algorithm (توسيع البحث), detection algorithm (توسيع البحث)
process optimization » model optimization (توسيع البحث)
phase process » phase proteins (توسيع البحث), whole process (توسيع البحث), phase protein (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary phase » binary image (توسيع البحث), final phase (توسيع البحث)
based pose » based case (توسيع البحث), based probes (توسيع البحث)
-
21
-
22
-
23
-
24
-
25
-
26
Small-scale dataset comparative analysis using the number of features selected.
منشور في 2023الموضوعات: -
27
-
28
-
29
-
30
-
31
-
32
Wilcoxon test results for feature selection.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
33
Feature selection metrics and their definitions.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
34
Statistical summary of all models.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
35
Feature selection results.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
36
ANOVA test for feature selection.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
37
Classification performance of ML and DL models.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
38
-
39
GSE96058 information.
منشور في 2024"…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …"
-
40
The performance of classifiers.
منشور في 2024"…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …"