بدائل البحث:
prediction optimization » production optimization (توسيع البحث), reaction optimization (توسيع البحث), function optimization (توسيع البحث)
ap optimization » ai optimization (توسيع البحث), art optimization (توسيع البحث), gpu optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
based ap » based _ (توسيع البحث), based 3d (توسيع البحث), based co (توسيع البحث)
prediction optimization » production optimization (توسيع البحث), reaction optimization (توسيع البحث), function optimization (توسيع البحث)
ap optimization » ai optimization (توسيع البحث), art optimization (توسيع البحث), gpu optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
based ap » based _ (توسيع البحث), based 3d (توسيع البحث), based co (توسيع البحث)
-
61
-
62
Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat.
منشور في 2025"…The consistent accuracy of 70.28% does not represent a flaw in the SVM. algorithm, but rather the predictive performance ceiling of the feature itself, whose simplicity and class overlap limit the model's discriminatory ability. …"
-
63
-
64
-
65
Table_1_Computational prediction of promotors in Agrobacterium tumefaciens strain C58 by using the machine learning technique.DOCX
منشور في 2023"…In the model, promotor sequences were encoded by three different kinds of feature descriptors, namely, accumulated nucleotide frequency, k-mer nucleotide composition, and binary encodings. The obtained features were optimized by using correlation and the mRMR-based algorithm. …"
-
66
-
67
Data_Sheet_1_Prediction of Mental Health in Medical Workers During COVID-19 Based on Machine Learning.ZIP
منشور في 2021"…In this study, we propose a novel prediction model based on optimization algorithm and neural network, which can select and rank the most important factors that affect mental health of medical workers. …"
-
68
Psoas muscle CT radiomics-based machine learning models to predict response to infliximab in patients with Crohn’s disease
منشور في 2025"…<i>Z</i> score standardization and independent sample <i>t</i> test were applied to identify optimal predictive features, which were then utilized in seven ML algorithms for training and validation. …"
-
69
-
70
DataSheet_1_Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer.docx
منشور في 2021"…We applied several feature selection strategies including the least absolute shrinkage and selection operator (LASSO), and recursive feature elimination (RFE), the maximum relevance minimum redundancy (mRMR), Boruta and Pearson correlation analysis, to select the most optimal features. We then built 120 diagnostic models using distinct classification algorithms and feature sets divided by MRI sequences and selection strategies to predict molecular subtype and AR expression of breast cancer in the testing dataset of leave-one-out cross-validation (LOOCV). …"
-
71
Data Sheet 1_Detection of litchi fruit maturity states based on unmanned aerial vehicle remote sensing and improved YOLOv8 model.docx
منشور في 2025"…In addition, YOLOv8-FPDW was more competitive than mainstream object detection algorithms. The study predicted the optimal harvest period for litchis, providing scientific support for orchard batch harvesting and fine management.…"
-
72
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
منشور في 2025"…</p><p dir="ltr">These biological metrics were used to define a binary toxicity label: entries were classified as toxic (1) or non-toxic (0) based on thresholds from standardized guidelines (e.g., ISO 10993-5:2009) and literature consensus. …"
-
73
Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf
منشور في 2020"…And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. …"
-
74
-
75
Table_1_iRNA5hmC: The First Predictor to Identify RNA 5-Hydroxymethylcytosine Modifications Using Machine Learning.docx
منشور في 2020"…In this predictor, we introduced a sequence-based feature algorithm consisting of two feature representations, (1) k-mer spectrum and (2) positional nucleotide binary vector, to capture the sequential characteristics of 5hmC sites. …"
-
76
Supplementary Material 8
منشور في 2025"…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…"
-
77
DataSheet_1_Exploring deep learning radiomics for classifying osteoporotic vertebral fractures in X-ray images.docx
منشور في 2024"…Utilizing the binary “One-vs-Rest” strategy, the model based on the RadImageNet dataset demonstrated superior efficacy in predicting Class 0, achieving an AUC of 0.969 and accuracy of 0.863. …"