يعرض 1 - 19 نتائج من 19 نتيجة بحث عن '(( binary based process optimisation algorithm ) OR ( binary b model optimization algorithm ))', وقت الاستعلام: 0.41s تنقيح النتائج
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5

    Classification baseline performance. حسب Doaa Sami Khafaga (21463870)

    منشور في 2025
    "…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …"
  6. 6

    Feature selection results. حسب Doaa Sami Khafaga (21463870)

    منشور في 2025
    "…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …"
  7. 7

    ANOVA test result. حسب Doaa Sami Khafaga (21463870)

    منشور في 2025
    "…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …"
  8. 8

    Summary of literature review. حسب Doaa Sami Khafaga (21463870)

    منشور في 2025
    "…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …"
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14

    Flowchart scheme of the ML-based model. حسب Noshaba Qasmi (20405009)

    منشور في 2024
    "…<b>K)</b> Algorithm selection from all models. <b>L)</b> Random forest selection. …"
  15. 15
  16. 16

    Models and Dataset حسب M RN (9866504)

    منشور في 2025
    "…</p><p dir="ltr"><br></p><p dir="ltr"><b>TJO (Tom and Jerry Optimization):</b><br>TJO is a nature-inspired metaheuristic algorithm that models the predator-prey dynamics of the cartoon characters Tom (predator) and Jerry (prey). …"
  17. 17

    Supplementary Material 8 حسب Nishitha R Kumar (19750617)

    منشور في 2025
    "…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…"
  18. 18

    Table 1_Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.docx حسب Ali Nabavi (21097424)

    منشور في 2025
    "…Multiple machine learning algorithms, including Random Forest, XGBoost, Gradient Boosting, Logistic Regression, CatBoost, and MLP, were optimized and evaluated. …"
  19. 19

    Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles حسب Soham Savarkar (21811825)

    منشور في 2025
    "…</p><p dir="ltr">Encoding: Categorical variables such as surface coating and cell type were grouped into logical classes and label-encoded to enable model compatibility.</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…"